EcoService Models Library (ESML)
loading
Compare EMs
Which comparison is best for me?EM Variables by Variable Role
One quick way to compare ecological models (EMs) is by comparing their variables. Predictor variables show what kinds of influences a model is able to account for, and what kinds of data it requires. Response variables show what information a model is capable of estimating.
This first comparison shows the names (and units) of each EM’s variables, side-by-side, sorted by variable role. Variable roles in ESML are as follows:
- Predictor Variables
- Time- or Space-Varying Variables
- Constants and Parameters
- Intermediate (Computed) Variables
- Response Variables
- Computed Response Variables
- Measured Response Variables
EM Variables by Category
A second way to use variables to compare EMs is by focusing on the kind of information each variable represents. The top-level categories in the ESML Variable Classification Hierarchy are as follows:
- Policy Regarding Use or Management of Ecosystem Resources
- Land Surface (or Water Body Bed) Cover, Use or Substrate
- Human Demographic Data
- Human-Produced Stressor or Enhancer of Ecosystem Goods and Services Production
- Ecosystem Attributes and Potential Supply of Ecosystem Goods and Services
- Non-monetary Indicators of Human Demand, Use or Benefit of Ecosystem Goods and Services
- Monetary Values
Besides understanding model similarities, sorting the variables for each EM by these 7 categories makes it easier to see if the compared models can be linked using similar variables. For example, if one model estimates an ecosystem attribute (in Category 5), such as water clarity, as a response variable, and a second model uses a similar attribute (also in Category 5) as a predictor of recreational use, the two models can potentially be used in tandem. This comparison makes it easier to spot potential model linkages.
All EM Descriptors
This selection allows a more detailed comparison of EMs by model characteristics other than their variables. The 50-or-so EM descriptors for each model are presented, side-by-side, in the following categories:
- EM Identity and Description
- EM Modeling Approach
- EM Locations, Environments, Ecology
- EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
EM Descriptors by Modeling Concepts
This feature guides the user through the use of the following seven concepts for comparing and selecting EMs:
- Conceptual Model
- Modeling Objective
- Modeling Context
- Potential for Model Linkage
- Feasibility of Model Use
- Model Certainty
- Model Structural Information
Though presented separately, these concepts are interdependent, and information presented under one concept may have relevance to other concepts as well.
EM Identity and Description
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
EM Short Name
em.detail.shortNameHelp
?
|
ACRU, South Africa | EPA national stormwater calculator tool |
|
EM Full Name
em.detail.fullNameHelp
?
|
ACRU (Agricultural Catchments Research Unit), South Africa | Environmental Protection Agency National stormwater calculator tool |
|
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
None | US EPA |
|
EM Source Document ID
|
271 |
428 ?Comment:This is a tool available on the web for downloading to personal computers. A manual is also available for further documentation of the tool. |
|
Document Author
em.detail.documentAuthorHelp
?
|
Egoh, B., Reyers, B., Rouget, M., Richardson, D.M., Le Maitre, D.C., and van Jaarsveld, A.S. | Rossman, L.A., Bernagros, J.T., Barr, C.M., and M.A. Simon |
|
Document Year
em.detail.documentYearHelp
?
|
2008 | 2022 |
|
Document Title
em.detail.sourceIdHelp
?
|
Mapping ecosystem services for planning and management | EPA National Stormwater Calculator Web App users guide-Version 3.4.0. |
|
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published | Peer reviewed and published |
|
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript | Published EPA report |
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
| Not applicable | https://www.epa.gov/water-research/national-stormwatercalculator | |
|
Contact Name
em.detail.contactNameHelp
?
|
Roland E Schulze | Lewis Rossman |
|
Contact Address
|
School of Bioresources Engineering and Environmental Hydrology, University of Natal, South Africa | Center for environmental solutions and emergency response, Cincinnati, Ohio |
|
Contact Email
|
schulzeR@nu.ac.za | n.a. |
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
Summary Description
em.detail.summaryDescriptionHelp
?
|
AUTHOR'S DESCRIPTION (Doc ID 272): "ACRU is a daily timestep, physical conceptual and multipurpose model structured to simulate impacts of land cover/ use change. The model can output, inter alia, components of runoff, irrigation supply and demand, reservoir water budgets as well as sediment and crop yields." AUTHOR'S DESCRIPTION (Doc ID 271): "We define the range of ecosystem services as areas of meaningful supply, similar to a species’ range or area of occupancy. The term ‘‘hotspots’’ was proposed by Norman Myers in the 1980s and refers to areas of high species richness, endemism and/or threat and has been widely used to prioritise areas for biodiversity conservation. Similarly, this study suggests that hotspots for ecosystem services are areas of critical management importance for the service. Here the term ecosystem service hotspot is used to refer to areas which provide large proportions of a particular service, and do not include measures of threat or endemism…The total benefit to people of water supply is a function of both the quantity and quality with the ecosystem playing a key role in the latter. However, due to the lack of suitable national scale data on water quality for quantifying the service, runoff was used as an estimate of the benefit where runoff is the total water yield from a watershed including surface and subsurface flow. This assumes that runoff is positively correlated with quality, which is the case in South Africa (Allanson et al., 1990)…In South Africa, water resources are mapped in water management areas called catchments (vs. watersheds) where a catchment is defined as the area of land that is drained by a single river system, including its tributaries (DWAF, 2004). There are 1946 quaternary (4th order) catchments in South Africa, the smallest is 4800 ha and the average size is 65,000 ha. Schulze (1997) modelled annual runoff for each quaternary catchment. During modelling of runoff, he used rainfall data collected over a period of more than 30 years, as well as data on other climatic factors, soil characteristics and grassland as the land cover. In this study, median annual simulated runoff was used as a measure of surface water supply. The volume of runoff per quaternary catchment was calculated for surface water supply. The range (areas with runoff of 30 million m^3 or more) and hotspots (areas with runoff of 70 million m^3 or more) were defined using a combination of statistics and expert inputs due to a lack of published thresholds in the literature." | "Abstract: EPA’s National Stormwater Calculator (SWC) is a software application tool that estimates the annual amount of rainwater and frequency of runoff from a specific site using green infrastructure as low impact development controls. The SWC is designed for use by anyone interested in reducing runoff from a property, including site developers, landscape architects, urban planners, and homeowners. This User’s guide contains information on the SWC web application. SWC Version 3.4 contains has updated historical meteorological data (from 1970 - 2006 to 1990 - 2019), updated Bureau of Labor Statistics Cost Data (from 2018 to 2020), and the 5.1.015 Stormwater Management Model (SWMM) engine (from 5.1.007). Evaporation was calculated by the Hargreaves method (EPA, 2015), based on historical or future daily temperature data." |
|
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
None identified | None given |
|
Biophysical Context
|
Semi-arid environment. Rainfall varies geographically from less than 50 to about 3000 mm per year (annual mean 450 mm). Soils are mostly very shallow with limited irrigation potential. | Sites up to 12 acres |
|
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
No scenarios presented | Climate change scenarios |
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application | Method Only |
|
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
Application of existing model | New or revised model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
Doc-272 ?Comment:Doc ID 272 was also used as a source document for this EM |
None |
|
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
None | None |
EM Modeling Approach
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
EM Temporal Extent
em.detail.tempExtentHelp
?
|
1950-1993 | Not applicable |
|
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-dependent | time-stationary |
|
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
future time | Not applicable |
|
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
discrete | Not applicable |
|
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
1 | Not applicable |
|
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Day | Not applicable |
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
Bounding Type
em.detail.boundingTypeHelp
?
|
Geopolitical | Not applicable |
|
Spatial Extent Name
em.detail.extentNameHelp
?
|
South Africa | Not applicable |
|
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
>1,000,000 km^2 | Not applicable |
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) | spatially lumped (in all cases) |
|
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
other (specify), for irregular (e.g., stream reach, lake basin) | Not applicable |
|
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
Distributed by catchments with average size of 65,000 ha | Not applicable |
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Numeric | Analytic |
|
EM Determinism
em.detail.deterStochHelp
?
|
deterministic | deterministic |
|
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
|
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
Model Calibration Reported?
em.detail.calibrationHelp
?
|
No | Not applicable |
|
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
No | Not applicable |
|
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
None | None |
|
Model Operational Validation Reported?
em.detail.validationHelp
?
|
No | Not applicable |
|
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No | Not applicable |
|
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No | Not applicable |
|
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable | Not applicable |
EM Locations, Environments, Ecology
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
| EM-84 | EM-937 |
|
|
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
| EM-84 | EM-937 |
| None | None |
Centroid Lat/Long (Decimal Degree)
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
Centroid Latitude
em.detail.ddLatHelp
?
|
-30 | Not applicable |
|
Centroid Longitude
em.detail.ddLongHelp
?
|
25 | Not applicable |
|
Centroid Datum
em.detail.datumHelp
?
|
WGS84 | Not applicable |
|
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Estimated | Not applicable |
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Rivers and Streams | Ground Water | Terrestrial Environment (sub-classes not fully specified) | Terrestrial Environment (sub-classes not fully specified) |
|
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
Not reported | Terrrestrial landcover |
|
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Ecological scale is coarser than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class |
Scale of differentiation of organisms modeled
|
EM ID
em.detail.idHelp
?
|
EM-84 | EM-937 |
|
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Not applicable | Not applicable |
Taxonomic level and name of organisms or groups identified
| EM-84 | EM-937 |
| None Available | None Available |
EnviroAtlas URL
| EM-84 | EM-937 |
| Average Annual Precipitation | Average Annual Precipitation, Water supply from NID reservoirs (million gallons), Enabling Conditions |
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
| EM-84 | EM-937 |
|
None |
<a target="_blank" rel="noopener noreferrer" href="https://www.epa.gov/eco-research/national-ecosystem-services-classification-system-nescs-plus">National Ecosystem Services Classification System (NESCS) Plus</a>
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
| EM-84 | EM-937 |
|
|
Home
Search EMs
My
EMs
Learn about
ESML
Show Criteria
Hide Criteria