EcoService Models Library (ESML)

Document: Mitigating greenhouse gas emisssions in subsurface-drained field using RZWQM2 (Doc-447)

447
Authors
Jiang, Q., Zhiming, Q., Madramootoo, C.A., and Creze, C.
Year
2018
Title
Mitigating greenhouse gas emisssions in subsurface-drained field using RZWQM2
Document Type
Journal Article
Publisher
Elsevier
Journal
Science of the total environment
Volume
646
Pages
377-389
Abstract
Greenhouse gas (GHG) emissions from agricultural soils are affected by various environmental factors and agronomic practices. The impact of inorganic nitrogen (N) fertilization rates and timing, and water table management practices on N2O and CO2 emissions were investigated to propose mitigation and adaptation efforts based on simulated results founded on field data. Drawing on 2012–2015 data measured on a subsurface-rained corn (Zea mays L.) field in Southern Quebec, the Root Zone Water Quality Model 2 (RZWQM2) was calibrated and validated Greenhouse gas (GHG) emissions from agricultural soils are affected by various environmental factors and agronomic practices. The impact of inorganic nitrogen (N) fertilization rates and timing, and water table management practices on N2O and CO2 emissions were investigated to propose mitigation and adaptation efforts based on simulated results founded on field data. Drawing on 2012–2015 data measured on a subsurface-drained corn (Zea mays L.) field in Southern Quebec, the Root Zone Water Quality Model 2 (RZWQM2) was calibrated and validated for the estimation of N2O and CO2 emissions under free drainage (FD) and controlled drainage with sub-irrigation (CD-SI). Long term simulation from 1971 to 2000 suggested that the optimal N fertilization should be in the range of 125 to 175 kg N ha−1 to obtain higher NUE (nitrogen use efficiency, 7–14%) and lower N2O emission (8–22%), compared to 200 kg N ha−1 for corn-soybean rotation (CS). While remaining crop yields, splitting N application would potentially decrease total N2O emissions by 11.0%. Due to higher soil moisture and lower soil O2 under CDSI, CO2 emissions declined by 6% while N2O emissions increased by 21% compared to FD. The CS system reduced CO2 and N2O emissions by 18.8% and 20.7%, respectively, when compared with continuous corn production. This study concludes that RZWQM2 model is capable of predicting GHG emissions, and GHG emissions from agriculture can be mitigated using agronomic management. for the estimation of N2O and CO2 emissions under free drainage (FD) and controlled drainage with sub-irrigation (CD-SI). Long term simulation from 1971 to 2000 suggested that the optimal N fertilization should be in the range of 125 to 175 kg N ha−1 to obtain higher NUE (nitrogen use efficiency, 7–14%) and lower N2O emission (8–22%), compared to 200 kg N ha−1 for corn-soybean rotation (CS). While remaining crop yields, splitting N application would potentially decrease total N2O emissions by 11.0%. Due to higher soil moisture and lower soil O2 under CDSI, CO2 emissions declined by 6% while N2O emissions increased by 21% compared to FD. The CS system reduced CO2 and N2O emissions by 18.8% and 20.7%, respectively, when compared with continuous corn production. This study concludes that RZWQM2 model is capable of predicting GHG emissions, and GHG emissions from agriculture can be mitigated using agronomic management.
URL Exit
https://linkinghub.elsevier.com/retrieve/pii/S0048969718327815
EMs citing this document as a source
EM-962
EMs citing this document for a related EM
?
None
EMs citing this document for a compared EM
?
None