EcoService Models Library (ESML)
loading
Compare EMs
Which comparison is best for me?EM Variables by Variable Role
One quick way to compare ecological models (EMs) is by comparing their variables. Predictor variables show what kinds of influences a model is able to account for, and what kinds of data it requires. Response variables show what information a model is capable of estimating.
This first comparison shows the names (and units) of each EM’s variables, side-by-side, sorted by variable role. Variable roles in ESML are as follows:
- Predictor Variables
- Time- or Space-Varying Variables
- Constants and Parameters
- Intermediate (Computed) Variables
- Response Variables
- Computed Response Variables
- Measured Response Variables
EM Variables by Category
A second way to use variables to compare EMs is by focusing on the kind of information each variable represents. The top-level categories in the ESML Variable Classification Hierarchy are as follows:
- Policy Regarding Use or Management of Ecosystem Resources
- Land Surface (or Water Body Bed) Cover, Use or Substrate
- Human Demographic Data
- Human-Produced Stressor or Enhancer of Ecosystem Goods and Services Production
- Ecosystem Attributes and Potential Supply of Ecosystem Goods and Services
- Non-monetary Indicators of Human Demand, Use or Benefit of Ecosystem Goods and Services
- Monetary Values
Besides understanding model similarities, sorting the variables for each EM by these 7 categories makes it easier to see if the compared models can be linked using similar variables. For example, if one model estimates an ecosystem attribute (in Category 5), such as water clarity, as a response variable, and a second model uses a similar attribute (also in Category 5) as a predictor of recreational use, the two models can potentially be used in tandem. This comparison makes it easier to spot potential model linkages.
All EM Descriptors
This selection allows a more detailed comparison of EMs by model characteristics other than their variables. The 50-or-so EM descriptors for each model are presented, side-by-side, in the following categories:
- EM Identity and Description
- EM Modeling Approach
- EM Locations, Environments, Ecology
- EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
EM Descriptors by Modeling Concepts
This feature guides the user through the use of the following seven concepts for comparing and selecting EMs:
- Conceptual Model
- Modeling Objective
- Modeling Context
- Potential for Model Linkage
- Feasibility of Model Use
- Model Certainty
- Model Structural Information
Though presented separately, these concepts are interdependent, and information presented under one concept may have relevance to other concepts as well.
EM Identity and Description
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
EM Short Name
em.detail.shortNameHelp
?
|
Green biomass production, Central French Alps | Community flowering date, Central French Alps | Cultural ecosystem services, Bilbao, Spain | Coral taxa and land development, St.Croix, VI, USA | Erosion prevention by vegetation, Portel, Portugal | SAV occurrence, St. Louis River, MN/WI, USA | Reef density of E. striatus, St. Croix, USVI | DayCent N2O flux simulation, Ireland | Sedge Wren density, CREP, Iowa, USA | P8 UCM |
EM Full Name
em.detail.fullNameHelp
?
|
Green biomass production, Central French Alps | Community weighted mean flowering date, Central French Alps | Cultural ecosystem services, Bilbao, Spain | Coral taxa richness and land development, St.Croix, Virgin Islands, USA | Soil erosion prevention provided by vegetation cover, Portel municipality, Portugal | Predicting submerged aquatic vegetation occurrence, St. Louis River Estuary, MN & WI, USA | Relative density of Epinephelus striatus (on reef), St. Croix, USVI | DayCent simulation N2O flux and climate change, Ireland | Sedge Wren population density, CREP (Conservation Reserve Enhancement Program) wetlands, Iowa, USA | P8 Urban Catchment model method |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
EU Biodiversity Action 5 | EU Biodiversity Action 5 |
None ?Comment:EU Mapping Studies |
US EPA | EU Biodiversity Action 5 | US EPA | US EPA | None | None | None |
EM Source Document ID
|
260 | 260 | 191 | 96 | 281 | 330 | 335 | 358 | 372 |
377 ?Comment:Published to the web. Previously versions prepared for EPA. |
Document Author
em.detail.documentAuthorHelp
?
|
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Casado-Arzuaga, I., Onaindia, M., Madariaga, I. and Verburg P. H. | Oliver, L. M., Lehrter, J. C. and Fisher, W. S. | Guerra, C.A., Pinto-Correia, T., Metzger, M.J. | Ted R. Angradi, Mark S. Pearson, David W. Bolgrien, Brent J. Bellinger, Matthew A. Starry, Carol Reschke | Yee, S. H., Dittmar, J. A., and L. M. Oliver | Abdalla, M., Yeluripati, J., Smith, P., Burke, J., Williams, M. | Otis, D. L., W. G. Crumpton, D. Green, A. K. Loan-Wilsey, R. L. McNeely, K. L. Kane, R. Johnson, T. Cooper, and M. Vandever | Walker, W. Jr., and J.D. Walker |
Document Year
em.detail.documentYearHelp
?
|
2011 | 2011 | 2013 | 2011 | 2014 | 2013 | 2014 | 2010 | 2010 | 2015 |
Document Title
em.detail.sourceIdHelp
?
|
Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Mapping recreation and aesthetic value of ecosystems in the Bilbao Metropolitan Greenbelt (northern Spain) to support landscape planning | Relating landscape development intensity to coral reef condition in the watersheds of St. Croix, US Virgin Islands | Mapping soil erosion prevention using an ecosystem service modeling framework for integrated land management and policy | Predicting submerged aquatic vegetation cover and occurrence in a Lake Superior estuary | Comparison of methods for quantifying reef ecosystem services: A case study mapping services for St. Croix, USVI | Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture | Assessment of environmental services of CREP wetlands in Iowa and the midwestern corn belt | P8 Urban Catchment Model Version 3.5 |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Not peer reviewed but is published (explain in Comment) |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published report | Published report |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | http://www.wwwalker.net/p8/v35/webhelp/splash.htm | |
Contact Name
em.detail.contactNameHelp
?
|
Sandra Lavorel | Sandra Lavorel | Izaskun Casado-Arzuaga | Leah Oliver | Carlos A. Guerra | Ted R. Angradi | Susan H. Yee | M. Abdalla | David Otis | William Walker Jr., PhD |
Contact Address
|
Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | Plant Biology and Ecology Department, University of the Basque Country UPV/EHU, Campus de Leioa, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain | National Health and Environmental Research Effects Laboratory | Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal | U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA | US EPA, Office of Research and Development, NHEERL, Gulf Ecology Division, Gulf Breeze, FL 32561, USA | Dept. of Botany, School of Natural Science, Trinity College Dublin, Dublin2, Ireland | U.S. Geological Survey, Iowa Cooperative Fish and Wildlife Research Unit, Iowa State University | Concord, Massachusetts |
Contact Email
|
sandra.lavorel@ujf-grenoble.fr | sandra.lavorel@ujf-grenoble.fr | izaskun.casado@ehu.es | leah.oliver@epa.gov | cguerra@uevora.pt | angradi.theodore@epa.gov | yee.susan@epa.gov | abdallm@tcd.ie | dotis@iastate.edu | bill@wwwalker.net |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
Summary Description
em.detail.summaryDescriptionHelp
?
|
ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services. Vegetative height and leaf traits such as leaf dry matter content were response traits strongly influenced by land use and abiotic environment, with follow-on effects on several ecosystem properties (e.g., green biomass production), and could therefore be used as functional markers of ES." AUTHOR'S DESCRIPTION: "Variation in green biomass production was modelled using…traits community-weighted mean (CWM) and functional divergence (FD) and abiotic variables (continuous variables; trait + abiotic) following Diaz et al. (2007). …The comparison between this model and the land-use alone model identifies the need for site-based information beyond a land use or land cover proxy, and the comparison with the land use + abiotic model assesses the value of additional ecological (trait) information…Green biomass production for each pixel was calculated and mapped using model estimates for…regression coefficients on abiotic variables and traits. For each pixel these calculations were applied to mapped estimates of abiotic variables and trait CWM and FD. This step is critically novel as compared to a direct application of the model by Diaz et al. (2007) in that we explicitly modelled the responses of trait community-weighted means and functional divergences to environment prior to evaluating their effects on ecosystem properties. Such an approach is the key to the explicit representation of functional variation across the landscape, as opposed to the use of unique trait values within each land use (see Albert et al. 2010)." | ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services." AUTHOR'S DESCRIPTION: "Community-weighted mean date of flowering onset was modelled using mixed models with land use and abiotic variables as fixed effects (LU + abiotic model) and year as a random effect…and modelled for each 20 x 20 m pixel using GLM estimated effects for each land use category and estimated regression coefficients with abiotic variables." | ABSTRACT "This paper presents a method to quantify cultural ecosystem services (ES) and their spatial distribution in the landscape based on ecological structure and social evaluation approaches. The method aims to provide quantified assessments of ES to support land use planning decisions. A GIS-based approach was used to estimate and map the provision of recreation and aesthetic services supplied by ecosystems in a peri-urban area located in the Basque Country, northern Spain. Data of two different public participation processes (frequency of visits to 25 different sites within the study area and aesthetic value of different landscape units) were used to validate the maps. Three maps were obtained as results: a map showing the provision of recreation services, an aesthetic value map and a map of the correspondences and differences between both services. The data obtained in the participation processes were found useful for the validation of the maps. A weak spatial correlation was found between aesthetic quality and recreation provision services, with an overlap of the highest values for both services only in 7.2 % of the area. A consultation with decision-makers indicated that the results were considered useful to identify areas that can be targeted for improvement of landscape and recreation management." | AUTHOR'S DESCRIPTION: "In this exploratory comparison, stony coral condition was related to watershed LULC and LDI values. We also compared the capacity of other potential human activity indicators to predict coral reef condition using multivariate analysis." (294) | ABSTRACT: "We present an integrative conceptual framework to estimate the provision of soil erosion prevention (SEP) by combining the structural impact of soil erosion and the social–ecological processes that allow for its mitigation. The framework was tested and illustrated in the Portel municipality in Southern Portugal, a Mediterranean silvo-pastoral system that is prone to desertification and soil degradation. The results show a clear difference in the spatial and temporal distribution of the capacity for ecosystem service provision and the actual ecosystem service provision." AUTHOR'S DESCRIPTION: "To begin assessing the contribution of SEP we need to identify the structural impact of soil erosion, that is, the erosion that would occur when vegetation is absent and therefore no ES is provided. It determines the potential soil erosion in a given place and time and is related to rainfall erosivity (that is, the erosive potential of rainfall), soil erodibility (as a characteristic of the soil type) and local topography. Although external drivers can have an effect on these variables (for example, climate change), they are less prone to be changed directly by human action. The actual ES provision reduces the total amount of structural impact, and we define the remaining impact as the ES mitigated impact. We can then define the capacity for ES provision as a key component to determine the fraction of the structural impact that is mitigated…Following the conceptual outline, we will estimate the SEP provided by vegetation cover using an adaptation of the Universal Soil Loss Equation (USLE)." | ABSTRACT: “Submerged aquatic vegetation (SAV) provides the biophysical basis for multiple ecosystem services in Great Lakes estuaries. Understanding sources of variation in SAV is necessary for sustainable management of SAV habitat. From data collected using hydroacoustic survey methods, we created predictive models for SAV in the St. Louis River Estuary (SLRE) of western Lake Superior. The dominant SAV species in most areas of the estuary was American wild celery (Vallisneria americana Michx.)…” AUTHOR’S DESCRIPTION: “The SLRE is a Great Lakes “rivermouth” ecosystem as defined by Larson et al. (2013). The 5000-ha estuary forms a section of the state border between Duluth, Minnesota and Superior, Wisconsin…In the SLRE, SAV beds are often patchy, turbidity varies considerably among areas (DeVore, 1978) and over time, and the growing season is short. Given these conditions, hydroacoustic survey methods were the best option for generating the extensive, high resolution data needed for modeling. From late July through mid September in 2011, we surveyed SAV in Allouez Bay, part of Superior Bay, eastern half of St. Louis Bay, and Spirit Lake…We used the measured SAV percent cover at the location immediately previous to each useable record location along each transect as a lag variable to correct for possible serial autocorrelation of model error. SAV percent cover, substrate parameters, corrected depth, and exposure and bed slope data were combined in Arc-GIS...We created logistic regression models for each area of the SLRE to predict the probability of SAV being present at each report location. We created models for the training data set using the Logistic procedure in SAS v.9.1 with step wise elimination (?=0.05). Plots of cover by depth for selected predictor values (Supplementary Information Appendix C) suggested that interactions between depth and other predictors were likely to be significant, and so were included in regression models. We retained the main effect if their interaction terms were significant in the model. We examined the performance of the models using the area under the receiver operating characteristic (AUROC) curve. AUROC is the probability of concordance between random pairs of observations and ranges from 0.5 to 1 (Gönen, 2006). We cross-validated logistic occurrence models for their ability to classify correctly locations in the validation (holdout) dataset and in the Superior Bay dataset… Model performance, as indicated by the area under the receiver operating characteristic (AUROC) curve was >0.8 (Table 3). Assessed accuracy of models (the percent of records where the predicted probability of occurrence and actual SAV presence or absence agreed) for split datasets was 79% for Allouez Bay, 86% for St. Louis Bay, and 78% for Spirit Lake." | ABSTRACT: "...We investigated and compared a number of existing methods for quantifying ecological integrity, shoreline protection, recreational opportunities, fisheries production, and the potential for natural products discovery from reefs. Methods were applied to mapping potential ecosystem services production around St. Croix, U.S. Virgin Islands. Overall, we found that a number of different methods produced similar predictions." AUTHOR'S DESCRIPTION: "A number of methods have been developed for linking biophysical attributes of reef condition, such as reef structural complexity, fish biomass, or species richness, to provisioning of ecosystem goods and services (Principe et al., 2012). We investigated the feasibility of using existing methods and data for mapping production of reef ecosystem goods and services. We applied these methods toward mapping potential ecosystem goods and services production in St. Croix, U.S. Virgin Islands (USVI)...For each of the five categories of ecosystem services, we chose a suite of models and indices for estimating potential production based on relative ease of implementation, consisting of well-defined parameters, and likely availability of input data, to maximize potential for transferability to other locations. For each method, we assembled the necessary reef condition and environmental data as spatial data layers for St. Croix (Table1). The coastal zone surrounding St. Croix was divided into 10x10 m grid cells, and production functions were applied to quantify ecosystem services provisioning in each grid cell...A number of recreational activities are associated directly or indirectly with coral reefs including scuba diving, snorkeling, surfing, underwater photography, recreational fishing, wildlife viewing, beach sunbathing and swimming, and beachcombing (Principe et al., 2012)…Synthesis of scientific literature and expert opinion can be used to estimate the relative potential for recreational opportunities across different benthic habitat types (Mumby et al., 2008). For each grid cell, we estimated the contribution of coral reefs to recreational opportunities as the overall weighted average of relative magnitudes of contribution across habitat types within that grid cell: Relative recreational opportunity j = ΣiciMij where ci is the fraction of area within each grid cell for each habitat type i (dense, medium dense, or sparse seagrass, mangroves, sand, macroalgae, A.palmata, Montastraea reef, patch reef, and dense or sparse gorgonians), and Mij is the magnitude associated with each habitat for a given metric j: density of E. striatus" | Simulation models are one of the approaches used to investigate greenhouse gas emissions and potential effects of global warming on terrestrial ecosystems. DayCent which is the daily time-step version of the CENTURY biogeochemical model, and DNDC (the DeNitrification–DeComposition model) were tested against observed nitrous oxide flux data from a field experiment on cut and extensively grazed pasture located at the Teagasc Oak Park Research Centre, Co. Carlow, Ireland. The soil was classified as a free draining sandy clay loam soil with a pH of 7.3 and a mean organic carbon and nitrogen content at 0–20 cm of 38 and 4.4 g kg−1 dry soil, respectively. The aims of this study were to validate DayCent and DNDC models for estimating N2O emissions from fertilized humid pasture, and to investigate the impacts of future climate change on N2O fluxes and biomass production. Measurements of N2O flux were carried out from November 2003 to November 2004 using static chambers. Three climate scenarios, a baseline of measured climatic data from the weather station at Carlow, and high and low temperature sensitivity scenarios predicted by the Community Climate Change Consortium For Ireland (C4I) based on the Hadley Centre Global Climate Model (HadCM3) and the Intergovernment Panel on Climate Change (IPCC) A1B emission scenario were investigated. DayCent predicted cumulative N2O flux and biomass production under fertilized grass with relative deviations of +38% and (−23%) from the measured, respectively. However, DayCent performs poorly under the control plots, with flux relative deviation of (−57%) from the measured. Comparison between simulated and measured flux suggests that both DayCent model’s response to N fertilizer and simulated background flux need to be adjusted. DNDC overestimated the measured flux with relative deviations of +132 and +258% due to overestimation of the effects of SOC. DayCent, though requiring some calibration for Irish conditions, simulated N2O fluxes more consistently than did DNDC. We used DayCent to estimate future fluxes of N2O from this field. No significant differences were found between cumulative N2O flux under climate change and baseline conditions. However, above-ground grass biomass was significantly increased from the baseline of 33 t ha−1 to 45 (+34%) and 50 (+48%) t dry matter ha−1 for the low and high temperature sensitivity scenario respectively. The increase in above-ground grass biomass was mainly due to the overall effects of high precipitation, temperature and CO2 concentration. Our results indicate that because of high N demand by the vigorously growing grass, cumulative N2O flux is not projected to increase significantly under climate change, unless more N is applied. This was observed for both the high and low temperature sensitivity scenarios. | ABSTRACT: "This final project report is a compendium of 3 previously submitted progress reports and a 4th report for work accomplished from August – December, 2009. Our initial primary objective (Progress Report I) was prediction of environmental services provided by the 27 Iowa Conservation Reserve Enhancement Program (CREP) wetland sites that had been completed by 2007 in the Prairie Pothole Region of northcentral Iowa. The sites contain 102.4 ha of wetlands and 377.4 ha of associated grassland buffers... With respect to wildlife habitat value, USFWS models predicted that the 27 wetlands would provide habitat for 136 pairs of 6 species of ducks, 48 pairs of Canada Geese, and 839 individuals of 5 grassland songbird species of special concern..." AUTHOR'S DESCRIPTION: "The migratory bird benefits of the 27 CREP sites were predicted for Sedge Wren (Cistothorus platensis)... Population estimates for these species were calculated using models developed by Quamen (2007) for the Prairie Pothole Region of Iowa (Table 3). The “neighborhood analysis” tool in the spatial analysis extension of ArcGIS (2008) was used to create landscape composition variables (grass400, grass3200, hay400, hay3200, tree400) needed for model input (see Table 3 for variable definitions). Values for the species-specific relative abundance (bbspath) variable were acquired from Diane Granfors, USFWS HAPET office. The equations for each model were used to calculate bird density (birds/ha) for each 15-m2 pixel of the land coverage. Next, the “zonal statistics” tool in the spatial analyst extension of ArcGIS (ESRI 2008) was used to calculate the average bird density for each CREP buffer. A population estimate for each site was then calculated by multiplying the average density by the buffer size." Equation: SEWR density = 1-1/1+e^(-0.8015652 + 0.08500569 * grass400) *e^(-0.7982511 + 0.0285891 * bbspath + 0.0105094 *grass400) | Author description: " P8 simulates the generation and transport of stormwater runoff pollutants in urban watersheds. Continuous water-balance and mass-balance calculations are performed on a user-defined drainage system consisting of the following elements: - Watersheds (<= 250 nonpoint source areas) - Devices (<=75 runoff storage/treatment areas or BMP's) - Particles (<= 5 fractions with different settling velocities) - Water Quality Components (<= 10 associated with particles) Simulations are driven by hourly precipitation and daily air temperature time series. Runoff contributions from snowmelt are also simulated. 'P8' abbreviates "Program for Predicting Polluting Particle Passage Thru Pits, Puddles, and Ponds", which more or less captures the basic features and functions of the model. It has been developed for use by engineers and planners in designing and evaluating runoff treatment schemes for existing or proposed urban developments. Design objectives are typically expressed in terms of percentage reduction in suspended solids or other water quality component. Despite its limitations, P8 has been used by state and local regulatory agencies as a consistent framework for evaluating proposed developments. Depending on applications, other models could be either too simple (easily used, but ignoring important factors) or too complex (requiring considerable site-specific data and/or user expertise). P8 attempts to strike a balance to between those extremes. Predicted water quality components include total suspended solids (sum of the individual particle fractions), total phosphorus, total Kjeldahl nitrogen, copper, lead, zinc, and total hydrocarbons. Simulated BMP types include detention ponds (wet, dry, extended), infiltration basins, swales, buffer strips, or other devices with user-specified stage/discharge curves and infiltration rates. A simple water budget algorithm can be used to estimate groundwater storage and stream base flow in watershed-scale applications. Initial calibrations were based upon runoff quality and particle settling velocity data collected under the EPA's Nationwide Urban Runoff Program (Athayede et al., 1983). Calibrations to impervious area runoff parameters for Wisconsin watersheds have been subsequently developed. Inputs are structured in terms which should be familiar to planners and engineers involved in hydrologic evaluation. Several tabular and graphic output formats are provided. " |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
None identified | None identified | Land management, ecosystem management, response to EU 2020 Biodiversity Strategy | Not applicable | None identified | None identified | None identified | climate change | None identified | None identified |
Biophysical Context
|
Elevation ranges from 1552 to 2442 m, on predominately south-facing slopes | Elevation ranges from 1552 to 2442 m, on predominantly south-facing slopes | Northern Spain; Bizkaia region | nearshore; <1.5 km offshore; <12 m depth | Open savannah-like forest of cork (Quercus suber) and holm (Quercus ilex) oaks, with trees of different ages randomly dispersed in changing densities, and pastures in the under cover. The pastures are mostly natural in a mosaic with patches of shrubs, which differ in size and the distribution depends mainly on the grazing intensity. Shallow, poor soils are prone to erosion, especially in areas with high grazing pressure. | submerged aquatic vegetation | No additional description provided | Agricultural field, Ann rainfall 824mm, mean air temp 9.4°C | Prairie pothole region of north-central Iowa | Urban setting |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
No scenarios presented | No scenarios presented | No scenarios presented | Not applicable | Different land management practices as represented by the comparison of different grazing intensities (i.e., livestock densities) in the whole study area and in three Civil Parishes within the study area | No scenarios presented | No scenarios presented | air temperature, precipitation, Atmospheric CO2 concentrations | No scenarios presented | N/A |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application | Method + Application | Method + Application | Method + Application | Method + Application (multiple runs exist) View EM Runs | Method + Application | Method + Application | Method + Application (multiple runs exist) View EM Runs | Method + Application | Method Only |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
New or revised model | New or revised model | New or revised model | New or revised model | New or revised model | New or revised model | Application of existing model | Application of existing model |
Application of existing model ?Comment:Models developed by Quamen (2007). |
New or revised model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
Doc-260 | Doc-260 | Doc-269 | None | None | Doc-282 | Doc-283 | Doc-284 | Doc-285 | None | None | None | Doc-372 | None |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
EM-66 | EM-68 | EM-69 | EM-70 | EM-71 | EM-79 | EM-80 | EM-81 | EM-82 | EM-83 | EM-65 | EM-66 | EM-68 | EM-69 | EM-70 | EM-79 | EM-80 | EM-81 | EM-82 | EM-83 | None | None | None | None | None | EM-598 | EM-652 | EM-651 | EM-649 | EM-648 | None |
EM Modeling Approach
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
EM Temporal Extent
em.detail.tempExtentHelp
?
|
2007-2009 | 2007-2008 | 2000 - 2007 | 2006-2007 | January to December 2003 | 2010 - 2012 | 2006-2007, 2010 | 1961-1990 | 1992-2007 | Not applicable |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-stationary | time-stationary | time-stationary | time-stationary | time-dependent | time-stationary | time-stationary | time-dependent | time-stationary | time-dependent |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | future time | Not applicable | Not applicable | both | Not applicable | Not applicable |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | discrete | Not applicable | Not applicable | discrete | Not applicable | discrete |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | 1 | Not applicable | Not applicable | 1 | Not applicable | 1 |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Month | Not applicable | Not applicable | Day | Not applicable | Hour |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
Bounding Type
em.detail.boundingTypeHelp
?
|
Physiographic or Ecological | Physiographic or Ecological | Geopolitical | Physiographic or Ecological | Geopolitical | Physiographic or ecological | Physiographic or ecological | Point or points | Multiple unrelated locations (e.g., meta-analysis) | Not applicable |
Spatial Extent Name
em.detail.extentNameHelp
?
|
Central French Alps | Central French Alps | Bilbao Metropolitan Greenbelt | St.Croix, U.S. Virgin Islands | Portel municipality | St. Louis River Estuary | Coastal zone surrounding St. Croix | Oak Park Research centre | CREP (Conservation Reserve Enhancement Program) wetland sites | Not applicable |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
10-100 km^2 | 10-100 km^2 | 100-1000 km^2 | 10-100 km^2 | 100-1000 km^2 | 10-100 km^2 | 100-1000 km^2 | 1-10 ha | 1-10 km^2 | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially lumped (in all cases) | spatially distributed (in at least some cases) |
spatially distributed (in at least some cases) ?Comment:BH: Each individual transect?s data was parceled into location reports, and that each report?s ?quadrat? area was dependent upon the angle of the hydroacoustic sampling beam. The spatial grain is 0.07 m^2, 0.20 m^2 and 0.70 m^2 for depths of 1 meter, 2 meters and 3 meters, respectively. |
spatially distributed (in at least some cases) | spatially lumped (in all cases) | spatially distributed (in at least some cases) | spatially lumped (in all cases) |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature | Not applicable | area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature | Not applicable | other (specify), for irregular (e.g., stream reach, lake basin) | Not applicable |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
20 m x 20 m | 20 m x 20 m | 2 m x 2 m | Not applicable | 250 m x 250 m | 0.07 m^2 to 0.70 m^2 | 10 m x 10 m | Not applicable | multiple, individual, irregular shaped sites | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Analytic | Analytic | Analytic | Analytic | Analytic | Analytic | Analytic | Numeric | Analytic | Numeric |
EM Determinism
em.detail.deterStochHelp
?
|
deterministic | deterministic | deterministic | deterministic | deterministic | deterministic | deterministic | deterministic | deterministic | deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
|
|
|
|
|
|
|
|
|
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
Model Calibration Reported?
em.detail.calibrationHelp
?
|
No | No | No | Yes | No | Yes | Yes | No | Unclear | Yes |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
Yes | Yes | No | Yes | No | Yes | No |
Yes ?Comment:for N2O fluxes |
No | Not applicable |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
|
|
None |
|
None |
|
None |
|
None | None |
Model Operational Validation Reported?
em.detail.validationHelp
?
|
Yes | No | Yes | No | No | Yes | Yes | Yes | Unclear | Not applicable |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No | No | No | Yes | No | No | No | No | No | Not applicable |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No | No | No | No | No | No | No | No | No | Not applicable |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable |
EM Locations, Environments, Ecology
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
|
|
|
None |
|
|
None |
|
|
None |
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
None | None | None |
|
None | None |
|
None | None | None |
Centroid Lat/Long (Decimal Degree)
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
Centroid Latitude
em.detail.ddLatHelp
?
|
45.05 | 45.05 | 43.25 | 17.75 | 38.3 | 46.72 | 17.73 | 52.86 | 42.62 | Not applicable |
Centroid Longitude
em.detail.ddLongHelp
?
|
6.4 | 6.4 | -2.92 | -64.75 | -7.7 | -96.13 | -64.77 | 6.54 | -93.84 | Not applicable |
Centroid Datum
em.detail.datumHelp
?
|
WGS84 | WGS84 | WGS84 | NAD83 | WGS84 | WGS84 | WGS84 | None provided | WGS84 | Not applicable |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Provided | Provided | Provided | Estimated | Estimated | Estimated | Estimated | Provided | Estimated | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Agroecosystems | Grasslands | Agroecosystems | Grasslands | Aquatic Environment (sub-classes not fully specified) | Rivers and Streams | Near Coastal Marine and Estuarine | Terrestrial Environment (sub-classes not fully specified) | Forests | Agroecosystems | Created Greenspace | Grasslands | Scrubland/Shrubland | Near Coastal Marine and Estuarine | Terrestrial Environment (sub-classes not fully specified) | Forests | Agroecosystems | Scrubland/Shrubland | Aquatic Environment (sub-classes not fully specified) | Rivers and Streams | Inland Wetlands | Lakes and Ponds | Near Coastal Marine and Estuarine | Agroecosystems | Inland Wetlands | Agroecosystems | Grasslands | Terrestrial Environment (sub-classes not fully specified) |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
Subalpine terraces, grasslands, and meadows | Subalpine terraces, grasslands, and meadows. | none | stony coral reef | Silvo-pastoral system | Freshwater estuarine system | Coral reefs | farm pasture | Grassland buffering inland wetlands set in agricultural land | Urban catchments |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Not applicable | Not applicable | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale is coarser than that of the Environmental Sub-class | Ecological scale corresponds to the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale corresponds to the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class |
Scale of differentiation of organisms modeled
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Community | Community | Not applicable | Guild or Assemblage | Not applicable | Not applicable | Guild or Assemblage | Not applicable | Species | Not applicable |
Taxonomic level and name of organisms or groups identified
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
None Available | None Available | None Available |
|
None Available | None Available |
|
None Available |
|
None Available |
EnviroAtlas URL
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
None | None |
|
|
|
|
|
|
|
|
<a target="_blank" rel="noopener noreferrer" href="https://www.epa.gov/eco-research/national-ecosystem-services-classification-system-nescs-plus">National Ecosystem Services Classification System (NESCS) Plus</a>
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
EM-65 | EM-71 | EM-193 | EM-260 |
EM-321 ![]() |
EM-414 | EM-453 |
EM-593 ![]() |
EM-650 | EM-656 |
|
None |
|
|
|
None |
|
|
|
None |