EcoService Models Library (ESML)
loading
EM: DayCent simulation N2O flux and climate change, Ireland (EM-593)
View EM Runs
Collapse All
Expand All
- Export Data to Spreadsheet (Free Viewers)
- View Variable Relationship Diagram (PDF)(1 pp, 80 KB, About PDF)
EM Identity and Description
EM Identification
EM ID
em.detail.idHelp
?
|
EM-593 |
EM Short Name
em.detail.shortNameHelp
?
|
DayCent N2O flux simulation, Ireland |
EM Full Name
em.detail.fullNameHelp
?
|
DayCent simulation N2O flux and climate change, Ireland |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
None |
EM Source Document ID
|
358 |
Document Author
em.detail.documentAuthorHelp
?
|
Abdalla, M., Yeluripati, J., Smith, P., Burke, J., Williams, M. |
Document Year
em.detail.documentYearHelp
?
|
2010 |
Document Title
em.detail.sourceIdHelp
?
|
Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript |
Software and Access
Not applicable | |
Contact Name
em.detail.contactNameHelp
?
|
M. Abdalla |
Contact Address
|
Dept. of Botany, School of Natural Science, Trinity College Dublin, Dublin2, Ireland |
Contact Email
|
abdallm@tcd.ie |
EM Description
Summary Description
em.detail.summaryDescriptionHelp
?
|
Simulation models are one of the approaches used to investigate greenhouse gas emissions and potential effects of global warming on terrestrial ecosystems. DayCent which is the daily time-step version of the CENTURY biogeochemical model, and DNDC (the DeNitrification–DeComposition model) were tested against observed nitrous oxide flux data from a field experiment on cut and extensively grazed pasture located at the Teagasc Oak Park Research Centre, Co. Carlow, Ireland. The soil was classified as a free draining sandy clay loam soil with a pH of 7.3 and a mean organic carbon and nitrogen content at 0–20 cm of 38 and 4.4 g kg−1 dry soil, respectively. The aims of this study were to validate DayCent and DNDC models for estimating N2O emissions from fertilized humid pasture, and to investigate the impacts of future climate change on N2O fluxes and biomass production. Measurements of N2O flux were carried out from November 2003 to November 2004 using static chambers. Three climate scenarios, a baseline of measured climatic data from the weather station at Carlow, and high and low temperature sensitivity scenarios predicted by the Community Climate Change Consortium For Ireland (C4I) based on the Hadley Centre Global Climate Model (HadCM3) and the Intergovernment Panel on Climate Change (IPCC) A1B emission scenario were investigated. DayCent predicted cumulative N2O flux and biomass production under fertilized grass with relative deviations of +38% and (−23%) from the measured, respectively. However, DayCent performs poorly under the control plots, with flux relative deviation of (−57%) from the measured. Comparison between simulated and measured flux suggests that both DayCent model’s response to N fertilizer and simulated background flux need to be adjusted. DNDC overestimated the measured flux with relative deviations of +132 and +258% due to overestimation of the effects of SOC. DayCent, though requiring some calibration for Irish conditions, simulated N2O fluxes more consistently than did DNDC. We used DayCent to estimate future fluxes of N2O from this field. No significant differences were found between cumulative N2O flux under climate change and baseline conditions. However, above-ground grass biomass was significantly increased from the baseline of 33 t ha−1 to 45 (+34%) and 50 (+48%) t dry matter ha−1 for the low and high temperature sensitivity scenario respectively. The increase in above-ground grass biomass was mainly due to the overall effects of high precipitation, temperature and CO2 concentration. Our results indicate that because of high N demand by the vigorously growing grass, cumulative N2O flux is not projected to increase significantly under climate change, unless more N is applied. This was observed for both the high and low temperature sensitivity scenarios. |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
climate change |
Biophysical Context
|
Agricultural field, Ann rainfall 824mm, mean air temp 9.4°C |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
air temperature, precipitation, Atmospheric CO2 concentrations |
EM Relationship to Other EMs or Applications
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application (multiple runs exist) View EM Runs |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
Application of existing model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
em.detail.relatedEmHelp
?
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
None |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
EM-598 |
EM Modeling Approach
EM Relationship to Time
EM Temporal Extent
em.detail.tempExtentHelp
?
|
1961-1990 |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-dependent |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
both |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
discrete |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
1 |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Day |
EM Spatial Extent
Bounding Type
em.detail.boundingTypeHelp
?
|
Point or points |
Spatial Extent Name
em.detail.extentNameHelp
?
|
Oak Park Research centre |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
1-10 ha |
Spatial Distribution of Computations
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially lumped (in all cases) |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
Not applicable |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
Not applicable |
EM Structure and Computation Approach
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Numeric |
EM Determinism
em.detail.deterStochHelp
?
|
deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
Model Checking Procedures Used
Model Calibration Reported?
em.detail.calibrationHelp
?
|
No |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
Yes ?Comment:for N2O fluxes |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
|
Model Operational Validation Reported?
em.detail.validationHelp
?
|
Yes |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable |
EM Locations, Environments, Ecology
Location of EM Application
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
em.detail.relationToSpaceTerrestrialHelp
?
|
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
em.detail.relationToSpaceMarineHelp
?
None |
Centroid Lat/Long (Decimal Degree)
Centroid Latitude
em.detail.ddLatHelp
?
|
52.86 |
Centroid Longitude
em.detail.ddLongHelp
?
|
6.54 |
Centroid Datum
em.detail.datumHelp
?
|
None provided |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Provided |
Environments and Scales Modeled
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Agroecosystems |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
farm pasture |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Ecological scale is finer than that of the Environmental Sub-class |
Scale and taxa of organisms modeled
Scale of differentiation of organisms modeled
em.detail.nameOfOrgsOrGroupsHelp
?
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Not applicable |
Taxonomic level and name of organisms or groups identified
taxonomyHelp
?
None Available |
EnviroAtlas URL
em.detail.enviroAtlasURLHelp
?
GAP Ecological Systems, Average Annual Precipitation, Agricultural water use (million gallons/day) |
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
em.detail.cicesHelp
?
|
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
fegs2Help
?
|
EM Variable Names (and Units)
Predictor
em.detail.variablesPredictorHelp
?
Intermediate
Intermediate (Computed) Variables (and Units)
em.detail.intermediateVariableHelp
?
|
None |
Response
em.detail.variablesResponseHelp
?
Observed Response Variables (and Units)
view details (2 variables)
em.detail.observedResponseHelp
?
|
|
Computed Response Variables (and Units)
view details (6 variables)
em.detail.computedResponseHelp
?
|