EcoService Models Library (ESML)
loading
Compare EMs
Which comparison is best for me?EM Variables by Variable Role
One quick way to compare ecological models (EMs) is by comparing their variables. Predictor variables show what kinds of influences a model is able to account for, and what kinds of data it requires. Response variables show what information a model is capable of estimating.
This first comparison shows the names (and units) of each EM’s variables, side-by-side, sorted by variable role. Variable roles in ESML are as follows:
- Predictor Variables
- Time- or Space-Varying Variables
- Constants and Parameters
- Intermediate (Computed) Variables
- Response Variables
- Computed Response Variables
- Measured Response Variables
EM Variables by Category
A second way to use variables to compare EMs is by focusing on the kind of information each variable represents. The top-level categories in the ESML Variable Classification Hierarchy are as follows:
- Policy Regarding Use or Management of Ecosystem Resources
- Land Surface (or Water Body Bed) Cover, Use or Substrate
- Human Demographic Data
- Human-Produced Stressor or Enhancer of Ecosystem Goods and Services Production
- Ecosystem Attributes and Potential Supply of Ecosystem Goods and Services
- Non-monetary Indicators of Human Demand, Use or Benefit of Ecosystem Goods and Services
- Monetary Values
Besides understanding model similarities, sorting the variables for each EM by these 7 categories makes it easier to see if the compared models can be linked using similar variables. For example, if one model estimates an ecosystem attribute (in Category 5), such as water clarity, as a response variable, and a second model uses a similar attribute (also in Category 5) as a predictor of recreational use, the two models can potentially be used in tandem. This comparison makes it easier to spot potential model linkages.
All EM Descriptors
This selection allows a more detailed comparison of EMs by model characteristics other than their variables. The 50-or-so EM descriptors for each model are presented, side-by-side, in the following categories:
- EM Identity and Description
- EM Modeling Approach
- EM Locations, Environments, Ecology
- EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
EM Descriptors by Modeling Concepts
This feature guides the user through the use of the following seven concepts for comparing and selecting EMs:
- Conceptual Model
- Modeling Objective
- Modeling Context
- Potential for Model Linkage
- Feasibility of Model Use
- Model Certainty
- Model Structural Information
Though presented separately, these concepts are interdependent, and information presented under one concept may have relevance to other concepts as well.
EM Identity and Description
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
EM Short Name
em.detail.shortNameHelp
?
|
Green biomass production, Central French Alps | Divergence in flowering date, Central French Alps | Cultural ecosystem services, Bilbao, Spain | Coral taxa and land development, St.Croix, VI, USA | InVEST - Water Yield (v3.0) | Polyscape, Wales | ESTIMAP - Pollination potential, Iran |
EM Full Name
em.detail.fullNameHelp
?
|
Green biomass production, Central French Alps | Functional divergence in flowering date, Central French Alps | Cultural ecosystem services, Bilbao, Spain | Coral taxa richness and land development, St.Croix, Virgin Islands, USA | InVEST v3.0 Reservoir Hydropower Projection, aka Water Yield | Polyscape, Wales | ESTIMAP - Pollination potential, Iran |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
EU Biodiversity Action 5 | EU Biodiversity Action 5 |
None ?Comment:EU Mapping Studies |
US EPA | InVEST | None | None |
EM Source Document ID
|
260 | 260 | 191 | 96 | 311 | 379 | 434 |
Document Author
em.detail.documentAuthorHelp
?
|
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Casado-Arzuaga, I., Onaindia, M., Madariaga, I. and Verburg P. H. | Oliver, L. M., Lehrter, J. C. and Fisher, W. S. | Natural Capital Project | Jackson, B., T. Pagella, F. Sinclair, B. Orellana, A. Henshaw, B. Reynolds, N. Mcintyre, H. Wheater, and A. Eycott | Rahimi, E., Barghjelveh, S., and P. Dong |
Document Year
em.detail.documentYearHelp
?
|
2011 | 2011 | 2013 | 2011 | 2015 | 2013 | 2020 |
Document Title
em.detail.sourceIdHelp
?
|
Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Mapping recreation and aesthetic value of ecosystems in the Bilbao Metropolitan Greenbelt (northern Spain) to support landscape planning | Relating landscape development intensity to coral reef condition in the watersheds of St. Croix, US Virgin Islands | Water Yield: Reservoir Hydropower Production- InVEST (v3.0) | Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multple ecosystem services | Using the Lonsdorf and ESTIMAP models for large-scale pollination Using the Lonsdorf and ESTIMAP models for large-scale pollination mapping (Case study: Iran) |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Web published | Published journal manuscript | Published journal manuscript |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
Not applicable | Not applicable | Not applicable | Not applicable | https://www.naturalcapitalproject.org/invest/ |
https://www.lucitools.org/ ?Comment:The LUCI (Land Utilisation and Capability Indicator) model, is a second-generation extension and software implementation of the Polyscape framework. |
Not applicable | |
Contact Name
em.detail.contactNameHelp
?
|
Sandra Lavorel | Sandra Lavorel | Izaskun Casado-Arzuaga | Leah Oliver | Natural Capital Project | Bethanna Jackson | Ehsan Rahini |
Contact Address
|
Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | Plant Biology and Ecology Department, University of the Basque Country UPV/EHU, Campus de Leioa, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain | National Health and Environmental Research Effects Laboratory | 371 Serra Mall, Stanford University, Stanford, Ca 94305 | School of Geography, Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand | Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran |
Contact Email
|
sandra.lavorel@ujf-grenoble.fr | sandra.lavorel@ujf-grenoble.fr | izaskun.casado@ehu.es | leah.oliver@epa.gov | invest@naturalcapitalproject.org | bethanna.jackson@vuw.ac.nz | ehsanrahimi666@gmail.com |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
Summary Description
em.detail.summaryDescriptionHelp
?
|
ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services. Vegetative height and leaf traits such as leaf dry matter content were response traits strongly influenced by land use and abiotic environment, with follow-on effects on several ecosystem properties (e.g., green biomass production), and could therefore be used as functional markers of ES." AUTHOR'S DESCRIPTION: "Variation in green biomass production was modelled using…traits community-weighted mean (CWM) and functional divergence (FD) and abiotic variables (continuous variables; trait + abiotic) following Diaz et al. (2007). …The comparison between this model and the land-use alone model identifies the need for site-based information beyond a land use or land cover proxy, and the comparison with the land use + abiotic model assesses the value of additional ecological (trait) information…Green biomass production for each pixel was calculated and mapped using model estimates for…regression coefficients on abiotic variables and traits. For each pixel these calculations were applied to mapped estimates of abiotic variables and trait CWM and FD. This step is critically novel as compared to a direct application of the model by Diaz et al. (2007) in that we explicitly modelled the responses of trait community-weighted means and functional divergences to environment prior to evaluating their effects on ecosystem properties. Such an approach is the key to the explicit representation of functional variation across the landscape, as opposed to the use of unique trait values within each land use (see Albert et al. 2010)." | ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services. Vegetative height and leaf traits such as leaf dry matter content were response traits strongly influenced by land use and abiotic environment, with follow-on effects on several ecosystem properties, and could therefore be used as functional markers of ES." AUTHOR'S DESCRIPTION: "Functional divergence of flowering date was modelled using mixed models with land use and abiotic variables as fixed effects (LU + abiotic model) and year as a random effect…and modelled for each 20 x 20 m pixel using GLM estimated effects for each land use category and estimated regression coefficients with abiotic variables." | ABSTRACT "This paper presents a method to quantify cultural ecosystem services (ES) and their spatial distribution in the landscape based on ecological structure and social evaluation approaches. The method aims to provide quantified assessments of ES to support land use planning decisions. A GIS-based approach was used to estimate and map the provision of recreation and aesthetic services supplied by ecosystems in a peri-urban area located in the Basque Country, northern Spain. Data of two different public participation processes (frequency of visits to 25 different sites within the study area and aesthetic value of different landscape units) were used to validate the maps. Three maps were obtained as results: a map showing the provision of recreation services, an aesthetic value map and a map of the correspondences and differences between both services. The data obtained in the participation processes were found useful for the validation of the maps. A weak spatial correlation was found between aesthetic quality and recreation provision services, with an overlap of the highest values for both services only in 7.2 % of the area. A consultation with decision-makers indicated that the results were considered useful to identify areas that can be targeted for improvement of landscape and recreation management." | AUTHOR'S DESCRIPTION: "In this exploratory comparison, stony coral condition was related to watershed LULC and LDI values. We also compared the capacity of other potential human activity indicators to predict coral reef condition using multivariate analysis." (294) | Please note: This ESML entry describes an InVEST model version that was current as of 2015. More recent versions may be available at the InVEST website. AUTHOR'S DESCRIPTION: "The InVEST Reservoir Hydropower model estimates the relative contributions of water from different parts of a landscape, offering insight into how changes in land use patterns affect annual surface water yield and hydropower production. Modeling the connections between landscape changes and hydrologic processes is not simple. Sophisticated models of these connections and associated processes (such as the WEAP model) are resource and data intensive and require substantial expertise. To accommodate more contexts, for which data are readily available, InVEST maps and models the annual average water yield from a landscape used for hydropower production, rather than directly addressing the affect of LULC changes on hydropower failure as this process is closely linked to variation in water inflow on a daily to monthly timescale. Instead, InVEST calculates the relative contribution of each land parcel to annual average hydropower production and the value of this contribution in terms of energy production. The net present value of hydropower production over the life of the reservoir also can be calculated by summing discounted annual revenues. The model runs on a gridded map. It estimates the quantity and value of water used for hydropower production from each subwatershed in the area of interest. It has three components, which run sequentially. First, it determines the amount of water running off each pixel as the precipitation less the fraction of the water that undergoes evapotranspiration. The model does not differentiate between surface, subsurface and baseflow, but assumes that all water yield from a pixel reaches the point of interest via one of these pathways. This model then sums and averages water yield to the subwatershed level. The pixel-scale calculations allow us to represent the heterogeneity of key driving factors in water yield such as soil type, precipitation, vegetation type, etc. However, the theory we are using as the foundation of this set of models was developed at the subwatershed to watershed scale. We are only confident in the interpretation of these models at the subwatershed scale, so all outputs are summed and/or averaged to the subwatershed scale. We do continue to provide pixel-scale representations of some outputs for calibration and model-checking purposes only. These pixel-scale maps are not to be interpreted for understanding of hydrological processes or to inform decision making of any kind. | ABSTRACT: "This paper introduces a GIS framework (Polyscape) designed to explore spatially explicit synergies and trade-offs amongst ecosystem services to support landscape management (from individual fields through to catchments of ca 10,000 km2 scale). Algorithms are described and results presented from a case study application within an upland Welsh catchment (Pontbren). Polyscape currently includes algorithms to explore the impacts of land cover change on flood risk, habitat connectivity, erosion and associated sediment delivery to receptors, carbon sequestration and agricultural productivity. Algorithms to trade these single-criteria landscape valuations against each other are also provided, identifying where multiple service synergies exist or could be established. Changes in land management can be input to the tool and “traffic light” coded impact maps produced, allowing visualisation of the impact of different decisions. Polyscape hence offers a means for prioritising existing feature preservation and identifying opportunities for landscape change. The basic algorithms can be applied using widely available national scale digital elevation, land use and soil data. Enhanced output is possible where higher resolution data are available..." AUTHOR'S DESCRIPTION: "The framework acts as a screening tool to identify areas where scientific investigation might be valuably directed and/or where a lack of information exists, and allows flexibility and quick visualisation of the impact of different rural land management decisions on a variety of sustainability criteria. Specifically, Polyscape is designed to facilitate: 1. spatially explicit policy implementation; 2. integration of policy implementation across sectors (e.g., water, biodiversity, agriculture and forestry); 3. participation (and learning) by many different stakeholder groups. Importantly, it is designed not as a prescriptive decision making tool, but as a negotiation tool. Algorithms allow identification of ideas of where change might be beneficial – for example where installation of “structures” such as ponds or buffer strips might be considered optimal at a farm scale – but also allows users to trial their own plans and build in their own knowledge/restrictions. The framework aims to highlight areas with maximum potential for improvement, not to place value judgements on which methods (e.g., tillage change, land use change, hard engineering approaches) might be appropriate to realise such potential. Furthermore, the toolbox aims to identify areas of existing high value – e.g., particularly productive cropland, wetlands..." "Our case study site is the 12.5 km2 catchment of the Pontbren in mid-Wales." NOTE: The LUCI (Land Utilisation and Capability Indicator) model, is a second-generation extension and software implementation of the Polyscape framework, as described in EM-659. https://esml.epa.gov/detail/em/659 | Abstract: ". ..we used the ESTIMAP model to improve the results of the Lonsdorf model. For this, we included the effects of roads, railways, rivers, wetlands, lakes, altitude, climate, and ecosystem boundaries in the ESTIMAP modeling and compared the results with the Lonsdorf model. The results of the Lonsdorf model showed that the majority of Iran had a very low potential for providing pollination service and only three percent of the northern and western parts of Iran had high potential. However, the results of the ESTIMAP model showed that 16% of Iran had a high potential to provide pollination that covers most of the northern and southern parts of the country. The results of the ESTIMAP model for pollination mapping in Iran showed the Lonsdorf model of estimating pollination service can be improved through considering other relevant factors." |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
None identified | None identified | Land management, ecosystem management, response to EU 2020 Biodiversity Strategy | Not applicable | None identified | Polyscape acts as a screening tool to allow flexibility and visualisation of the impact of different rural land management decisions. | None reported |
Biophysical Context
|
Elevation ranges from 1552 to 2442 m, on predominately south-facing slopes | Elevations ranging from 1552 m to 2442 m, on predominantly south-facing slopes | Northern Spain; Bizkaia region | nearshore; <1.5 km offshore; <12 m depth | None applicable | Elevation ranges between 170 m and 425 m | None additional |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
No scenarios presented | No scenarios presented | No scenarios presented | Not applicable | N/A | Initial habitat coverage (1990), and planting additional broadleaved woodland (2001-2007) | N/A |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application | Method + Application | Method + Application | Method + Application | Method Only | Method + Application | Method + Application |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
New or revised model | New or revised model | New or revised model | New or revised model | New or revised model | New or revised model | Application of existing model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
Doc-260 | Doc-260 | Doc-269 | None | None | Doc-307 | Doc-280 | Doc-338 | Doc-205 | Doc-380 | Doc-432 |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
EM-66 | EM-68 | EM-69 | EM-70 | EM-71 | EM-79 | EM-80 | EM-81 | EM-82 | EM-83 | EM-65 | EM-66 | EM-68 | EM-69 | EM-70 | EM-71 | EM-80 | EM-81 | EM-82 | EM-83 | None | None | EM-437 | EM-148 | EM-344 | EM-111 | EM-659 | EM-939 |
EM Modeling Approach
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
EM Temporal Extent
em.detail.tempExtentHelp
?
|
2007-2009 | 2007-2008 | 2000 - 2007 | 2006-2007 | Not applicable | 1990-2007 | 2020 |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-stationary | time-stationary | time-stationary | time-stationary | time-dependent | time-stationary | time-stationary |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | future time | Not applicable | Not applicable |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | discrete | Not applicable | Not applicable |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | 1 | Not applicable | Not applicable |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Year | Not applicable | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
Bounding Type
em.detail.boundingTypeHelp
?
|
Physiographic or Ecological | Physiographic or Ecological | Geopolitical | Physiographic or Ecological | Not applicable | Watershed/Catchment/HUC | Geopolitical |
Spatial Extent Name
em.detail.extentNameHelp
?
|
Central French Alps | Central French Alps | Bilbao Metropolitan Greenbelt | St.Croix, U.S. Virgin Islands | Not applicable | Pontbren catchment | Iran |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
10-100 km^2 | 10-100 km^2 | 100-1000 km^2 | 10-100 km^2 | Not applicable | 10-100 km^2 | >1,000,000 km^2 |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially lumped (in all cases) |
spatially distributed (in at least some cases) ?Comment:pixel is likely 30m x 30m |
spatially distributed (in at least some cases) |
spatially distributed (in at least some cases) ?Comment:Varies by inputs, but results are for areas of country |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature | Not applicable | area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
20 m x 20 m | 20 m x 20 m | 2 m x 2 m | Not applicable | Not specified | Not reported | ha^2 |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Analytic | Analytic | Analytic | Analytic | Numeric | Analytic | Numeric |
EM Determinism
em.detail.deterStochHelp
?
|
deterministic | deterministic | deterministic | deterministic | deterministic | deterministic | deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
|
|
|
|
|
|
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
Model Calibration Reported?
em.detail.calibrationHelp
?
|
No | No | No | Yes |
Yes ?Comment:Annual Yield can be calibrated with actual yield based up 10 year average input data though this was an "optional" part of the model. Calibrate with total precipitation and potential evapotranspiration. Before the calibration process is commenced, the modelers suggest performing a sensitivity analysis with the observed runoff data to define the parameters that influence model outputs the most. The calibration can then focus on highly sensitive parameters followed by less sensitive ones. |
No | No |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
Yes | Yes | No | Yes | Not applicable | No | No |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
|
|
None |
|
None | None | None |
Model Operational Validation Reported?
em.detail.validationHelp
?
|
Yes | No | Yes | No | No | No | No |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No | No | No | Yes | No | No | No |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No | No | No | No | Not applicable | No | No |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable |
EM Locations, Environments, Ecology
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
|
|
|
None | None |
|
Comment:Model for Iran - no form preset id for country |
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
None | None | None |
|
None | None | None |
Centroid Lat/Long (Decimal Degree)
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
Centroid Latitude
em.detail.ddLatHelp
?
|
45.05 | 45.05 | 43.25 | 17.75 | -9999 | 52.61 | 32.29 |
Centroid Longitude
em.detail.ddLongHelp
?
|
6.4 | 6.4 | -2.92 | -64.75 | -9999 | -3.3 | 53.68 |
Centroid Datum
em.detail.datumHelp
?
|
WGS84 | WGS84 | WGS84 | NAD83 | Not applicable | WGS84 | WGS84 |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Provided | Provided | Provided | Estimated | Not applicable | Estimated | Estimated |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Agroecosystems | Grasslands | Agroecosystems | Grasslands | Aquatic Environment (sub-classes not fully specified) | Rivers and Streams | Near Coastal Marine and Estuarine | Terrestrial Environment (sub-classes not fully specified) | Forests | Agroecosystems | Created Greenspace | Grasslands | Scrubland/Shrubland | Near Coastal Marine and Estuarine | Rivers and Streams | Inland Wetlands | Lakes and Ponds | Forests | Agroecosystems | Grasslands | Terrestrial Environment (sub-classes not fully specified) |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
Subalpine terraces, grasslands, and meadows | Subalpine terraces, grasslands, and meadows | none | stony coral reef | Watershed | mainly of ‘improved’ pasture, semi-natural, unmanaged moorland, mature woodland, recent tree plantations, and small paved/roofed areas, root crops and open water | terrestrial land types |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Not applicable | Ecological scale is coarser than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Not applicable | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class |
Scale of differentiation of organisms modeled
EM ID
em.detail.idHelp
?
|
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Community | Community | Not applicable | Guild or Assemblage | Not applicable | Unsure | Not applicable |
Taxonomic level and name of organisms or groups identified
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
None Available | None Available | None Available |
|
None Available | None Available |
|
EnviroAtlas URL
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
None | None |
|
|
|
|
|
<a target="_blank" rel="noopener noreferrer" href="https://www.epa.gov/eco-research/national-ecosystem-services-classification-system-nescs-plus">National Ecosystem Services Classification System (NESCS) Plus</a>
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
EM-65 | EM-79 | EM-193 | EM-260 | EM-368 | EM-658 | EM-941 |
|
None |
|
|
|
|
|