EcoService Models Library (ESML)
loading
EM: Annual profit from agriculture, South Australia (EM-126)
Collapse All
Expand All
- Export Data to Spreadsheet (Free Viewers)
- View Variable Relationship Diagram (PDF)(1 pp, 80 KB, About PDF)
EM Identity and Description
EM Identification
EM ID
em.detail.idHelp
?
|
EM-126 |
EM Short Name
em.detail.shortNameHelp
?
|
Annual profit from agriculture, South Australia |
EM Full Name
em.detail.fullNameHelp
?
|
Annual profit from agriculture, South Australia |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
None |
EM Source Document ID
|
243 |
Document Author
em.detail.documentAuthorHelp
?
|
Crossman, N. D., Bryan, B. A., and Summers, D. M. |
Document Year
em.detail.documentYearHelp
?
|
2011 |
Document Title
em.detail.sourceIdHelp
?
|
Carbon payments and low-cost conservation |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript |
Software and Access
Not applicable | |
Contact Name
em.detail.contactNameHelp
?
|
Neville D. Crossman |
Contact Address
|
CSIRO Ecosystem Sciences, PMB 2, Glen Osmond, South Australia, 5064, Australia |
Contact Email
|
neville.crossman@csiro.au |
EM Description
Summary Description
em.detail.summaryDescriptionHelp
?
|
ABSTRACT: "A price on carbon is expected to generate demand for carbon offset schemes. This demand could drive investment in tree-based monocultures that provide higher carbon yields than diverse plantings of native tree and shrub species, which sequester less carbon but provide greater variation in vegetation structure and composition. Economic instruments such as species conservation banking, the creation and trading of credits that represent biological-diversity values on private land, could close the financial gap between monocultures and more diverse plantings by providing payments to individuals who plant diverse species in locations that contribute to conservation and restoration goals. We studied a highly modified agricultural system in southern Australia that is typical of many temperate agriculture zones globally (i.e., has a high proportion of endangered species, high levels of habitat fragmentation, and presence of non-native species). We quantified the economic returns from agriculture and from carbon plantings." AUTHOR'S DESCRIPTION: "The economic returns of carbon plantings are highly variable and depend primarily on carbon yield and price and opportunity costs (Newell & Stavins 2000; Richards & Stokes 2004; Torres et al. 2010). In this context, opportunity cost is usually expressed as the profit from agricultural production…We based our calculations of agricultural profit on Bryan et al. (2009), who calculated profit at full equity (i.e., economic return to land, capital, and management, exclusive of financial debt). We calculated an annual profit at full equity (PFEc) layer for each commodity (c) in the set of agricultural commodities (C), where C is wheat, field peas, beef cattle, or sheep." |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
None identified |
Biophysical Context
|
Mix of remnant native vegetation and agricultural land. Remnant vegetation is in 20 large (>10,000 ha) contiguous fragments where rainfall is low. Acacia spp. and Eucalyptus spp. are the dominant tree species in the remnant vegetation, and major native vegetation types are open forests, woodlands, and open woodlands. Dominant agricultural uses are annual crops, annual legumes, and grazing of sheep and cows. The climate is Mediterranean with average annual rainfall ranging from 250 mm to 1000 mm. |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
No scenarios presented |
EM Relationship to Other EMs or Applications
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
New or revised model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
em.detail.relatedEmHelp
?
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
Doc-244 |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
None |
EM Modeling Approach
EM Relationship to Time
EM Temporal Extent
em.detail.tempExtentHelp
?
|
2002-2008 |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-stationary |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
Not applicable |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
Not applicable |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
Not applicable |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Not applicable |
EM Spatial Extent
Bounding Type
em.detail.boundingTypeHelp
?
|
Physiographic or Ecological |
Spatial Extent Name
em.detail.extentNameHelp
?
|
Agricultural districts of the state of South Australia |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
100,000-1,000,000 km^2 |
Spatial Distribution of Computations
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
area, for pixel or radial feature |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
1 ha |
EM Structure and Computation Approach
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Analytic |
EM Determinism
em.detail.deterStochHelp
?
|
deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
Model Checking Procedures Used
Model Calibration Reported?
em.detail.calibrationHelp
?
|
No |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
No |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
None |
Model Operational Validation Reported?
em.detail.validationHelp
?
|
No |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable |
EM Locations, Environments, Ecology
Location of EM Application
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
em.detail.relationToSpaceTerrestrialHelp
?
|
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
em.detail.relationToSpaceMarineHelp
?
None |
Centroid Lat/Long (Decimal Degree)
Centroid Latitude
em.detail.ddLatHelp
?
|
-34.9 |
Centroid Longitude
em.detail.ddLongHelp
?
|
138.7 |
Centroid Datum
em.detail.datumHelp
?
|
WGS84 |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Estimated |
Environments and Scales Modeled
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Agroecosystems |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
Agricultural land for annual crops, annual legumes, and grazing of sheep and cows |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Ecological scale is finer than that of the Environmental Sub-class |
Scale and taxa of organisms modeled
Scale of differentiation of organisms modeled
em.detail.nameOfOrgsOrGroupsHelp
?
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Guild or Assemblage |
Taxonomic level and name of organisms or groups identified
taxonomyHelp
?
|
EnviroAtlas URL
em.detail.enviroAtlasURLHelp
?
GAP Ecological Systems |
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
em.detail.cicesHelp
?
|
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
fegs2Help
?
None |
EM Variable Names (and Units)
Predictor
em.detail.variablesPredictorHelp
?
Intermediate
Intermediate (Computed) Variables (and Units)
em.detail.intermediateVariableHelp
?
|
None |
Response
em.detail.variablesResponseHelp
?
Observed Response Variables (and Units)
em.detail.observedResponseHelp
?
|
None |
Computed Response Variables (and Units)
view details (1 variable)
em.detail.computedResponseHelp
?
|