EcoService Models Library (ESML)
loading
Compare EMs
Which comparison is best for me?EM Variables by Variable Role
One quick way to compare ecological models (EMs) is by comparing their variables. Predictor variables show what kinds of influences a model is able to account for, and what kinds of data it requires. Response variables show what information a model is capable of estimating.
This first comparison shows the names (and units) of each EM’s variables, side-by-side, sorted by variable role. Variable roles in ESML are as follows:
- Predictor Variables
- Time- or Space-Varying Variables
- Constants and Parameters
- Intermediate (Computed) Variables
- Response Variables
- Computed Response Variables
- Measured Response Variables
EM Variables by Category
A second way to use variables to compare EMs is by focusing on the kind of information each variable represents. The top-level categories in the ESML Variable Classification Hierarchy are as follows:
- Policy Regarding Use or Management of Ecosystem Resources
- Land Surface (or Water Body Bed) Cover, Use or Substrate
- Human Demographic Data
- Human-Produced Stressor or Enhancer of Ecosystem Goods and Services Production
- Ecosystem Attributes and Potential Supply of Ecosystem Goods and Services
- Non-monetary Indicators of Human Demand, Use or Benefit of Ecosystem Goods and Services
- Monetary Values
Besides understanding model similarities, sorting the variables for each EM by these 7 categories makes it easier to see if the compared models can be linked using similar variables. For example, if one model estimates an ecosystem attribute (in Category 5), such as water clarity, as a response variable, and a second model uses a similar attribute (also in Category 5) as a predictor of recreational use, the two models can potentially be used in tandem. This comparison makes it easier to spot potential model linkages.
All EM Descriptors
This selection allows a more detailed comparison of EMs by model characteristics other than their variables. The 50-or-so EM descriptors for each model are presented, side-by-side, in the following categories:
- EM Identity and Description
- EM Modeling Approach
- EM Locations, Environments, Ecology
- EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
EM Descriptors by Modeling Concepts
This feature guides the user through the use of the following seven concepts for comparing and selecting EMs:
- Conceptual Model
- Modeling Objective
- Modeling Context
- Potential for Model Linkage
- Feasibility of Model Use
- Model Certainty
- Model Structural Information
Though presented separately, these concepts are interdependent, and information presented under one concept may have relevance to other concepts as well.
EM Identity and Description
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
EM Short Name
em.detail.shortNameHelp
?
|
Green biomass production, Central French Alps | Community flowering date, Central French Alps | Divergence in flowering date, Central French Alps | Coral taxa and land development, St.Croix, VI, USA | SAV occurrence, St. Louis River, MN/WI, USA | SMOKE emissions model, Asia |
EM Full Name
em.detail.fullNameHelp
?
|
Green biomass production, Central French Alps | Community weighted mean flowering date, Central French Alps | Functional divergence in flowering date, Central French Alps | Coral taxa richness and land development, St.Croix, Virgin Islands, USA | Predicting submerged aquatic vegetation occurrence, St. Louis River Estuary, MN & WI, USA | Development of an anthropogenic emissions processing system for Asia using SMOKE |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
EU Biodiversity Action 5 | EU Biodiversity Action 5 | EU Biodiversity Action 5 | US EPA | US EPA | None |
EM Source Document ID
|
260 | 260 | 260 | 96 | 330 | 481 |
Document Author
em.detail.documentAuthorHelp
?
|
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Oliver, L. M., Lehrter, J. C. and Fisher, W. S. | Ted R. Angradi, Mark S. Pearson, David W. Bolgrien, Brent J. Bellinger, Matthew A. Starry, Carol Reschke | Woo, J.H., Choi, K.C., Kim, H.K., Baek, B.H., Jang, M., Eum, J.H., Song, C.H., Ma, Y.I., Sunwoo, Y., Chang, L.S. and Yoo, S.H. |
Document Year
em.detail.documentYearHelp
?
|
2011 | 2011 | 2011 | 2011 | 2013 | 2012 |
Document Title
em.detail.sourceIdHelp
?
|
Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Relating landscape development intensity to coral reef condition in the watersheds of St. Croix, US Virgin Islands | Predicting submerged aquatic vegetation cover and occurrence in a Lake Superior estuary | Development of an anthropogenic emissions processing system for Asia using SMOKE |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | https://www.cmascenter.org/smoke/ | |
Contact Name
em.detail.contactNameHelp
?
|
Sandra Lavorel | Sandra Lavorel | Sandra Lavorel | Leah Oliver | Ted R. Angradi | Jung-Hun Woo |
Contact Address
|
Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | National Health and Environmental Research Effects Laboratory | U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA | Department of Advanced Technology Fusion, Room 812, San-Hak Bldg., Konkuk University, Seoul, South Korea |
Contact Email
|
sandra.lavorel@ujf-grenoble.fr | sandra.lavorel@ujf-grenoble.fr | sandra.lavorel@ujf-grenoble.fr | leah.oliver@epa.gov | angradi.theodore@epa.gov | jwoo@konkuk.ac.kr |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
Summary Description
em.detail.summaryDescriptionHelp
?
|
ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services. Vegetative height and leaf traits such as leaf dry matter content were response traits strongly influenced by land use and abiotic environment, with follow-on effects on several ecosystem properties (e.g., green biomass production), and could therefore be used as functional markers of ES." AUTHOR'S DESCRIPTION: "Variation in green biomass production was modelled using…traits community-weighted mean (CWM) and functional divergence (FD) and abiotic variables (continuous variables; trait + abiotic) following Diaz et al. (2007). …The comparison between this model and the land-use alone model identifies the need for site-based information beyond a land use or land cover proxy, and the comparison with the land use + abiotic model assesses the value of additional ecological (trait) information…Green biomass production for each pixel was calculated and mapped using model estimates for…regression coefficients on abiotic variables and traits. For each pixel these calculations were applied to mapped estimates of abiotic variables and trait CWM and FD. This step is critically novel as compared to a direct application of the model by Diaz et al. (2007) in that we explicitly modelled the responses of trait community-weighted means and functional divergences to environment prior to evaluating their effects on ecosystem properties. Such an approach is the key to the explicit representation of functional variation across the landscape, as opposed to the use of unique trait values within each land use (see Albert et al. 2010)." | ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services." AUTHOR'S DESCRIPTION: "Community-weighted mean date of flowering onset was modelled using mixed models with land use and abiotic variables as fixed effects (LU + abiotic model) and year as a random effect…and modelled for each 20 x 20 m pixel using GLM estimated effects for each land use category and estimated regression coefficients with abiotic variables." | ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services. Vegetative height and leaf traits such as leaf dry matter content were response traits strongly influenced by land use and abiotic environment, with follow-on effects on several ecosystem properties, and could therefore be used as functional markers of ES." AUTHOR'S DESCRIPTION: "Functional divergence of flowering date was modelled using mixed models with land use and abiotic variables as fixed effects (LU + abiotic model) and year as a random effect…and modelled for each 20 x 20 m pixel using GLM estimated effects for each land use category and estimated regression coefficients with abiotic variables." | AUTHOR'S DESCRIPTION: "In this exploratory comparison, stony coral condition was related to watershed LULC and LDI values. We also compared the capacity of other potential human activity indicators to predict coral reef condition using multivariate analysis." (294) | ABSTRACT: “Submerged aquatic vegetation (SAV) provides the biophysical basis for multiple ecosystem services in Great Lakes estuaries. Understanding sources of variation in SAV is necessary for sustainable management of SAV habitat. From data collected using hydroacoustic survey methods, we created predictive models for SAV in the St. Louis River Estuary (SLRE) of western Lake Superior. The dominant SAV species in most areas of the estuary was American wild celery (Vallisneria americana Michx.)…” AUTHOR’S DESCRIPTION: “The SLRE is a Great Lakes “rivermouth” ecosystem as defined by Larson et al. (2013). The 5000-ha estuary forms a section of the state border between Duluth, Minnesota and Superior, Wisconsin…In the SLRE, SAV beds are often patchy, turbidity varies considerably among areas (DeVore, 1978) and over time, and the growing season is short. Given these conditions, hydroacoustic survey methods were the best option for generating the extensive, high resolution data needed for modeling. From late July through mid September in 2011, we surveyed SAV in Allouez Bay, part of Superior Bay, eastern half of St. Louis Bay, and Spirit Lake…We used the measured SAV percent cover at the location immediately previous to each useable record location along each transect as a lag variable to correct for possible serial autocorrelation of model error. SAV percent cover, substrate parameters, corrected depth, and exposure and bed slope data were combined in Arc-GIS...We created logistic regression models for each area of the SLRE to predict the probability of SAV being present at each report location. We created models for the training data set using the Logistic procedure in SAS v.9.1 with step wise elimination (?=0.05). Plots of cover by depth for selected predictor values (Supplementary Information Appendix C) suggested that interactions between depth and other predictors were likely to be significant, and so were included in regression models. We retained the main effect if their interaction terms were significant in the model. We examined the performance of the models using the area under the receiver operating characteristic (AUROC) curve. AUROC is the probability of concordance between random pairs of observations and ranges from 0.5 to 1 (Gönen, 2006). We cross-validated logistic occurrence models for their ability to classify correctly locations in the validation (holdout) dataset and in the Superior Bay dataset… Model performance, as indicated by the area under the receiver operating characteristic (AUROC) curve was >0.8 (Table 3). Assessed accuracy of models (the percent of records where the predicted probability of occurrence and actual SAV presence or absence agreed) for split datasets was 79% for Allouez Bay, 86% for St. Louis Bay, and 78% for Spirit Lake." | Air quality modeling is a useful methodology to investigate air quality degradation in various locations and to analyze effectiveness of emission reduction plans. A comprehensive air quality model usually requires a coordinated set of emissions input of all necessary chemical species. We have developed an anthropogenic emissions processing system for Asia in support of air quality modeling and analysis over Asia (named SMOKE-Asia). The SMOKE (Sparse Matrix Operator kernel Emissions) system, which was developed by U.S. EPA and has been maintained by the Carolina Environmental Program (CEP) of the University of North Carolina, was used to develop our emissions processing system. A merged version of INTEX 2006 and TRACE-P 2000 inventories was used as an initial Asian emissions inventory. The IDA (Inventory Data Analyzer) format was used to create SMOKE-ready emissions. Source Classification Codes (SCCs) and country/state/county (FIPS) code, which are the two key data fields of SMOKE IDA data structure, were created for Asia. The 38 SCCs and 2752 FIPS codes were allocated to our SMOKE-ready emissions for more comprehensive processing. US EPA’s MIMS (Multimedia Integrated Modeling System) Spatial Allocator software, along with many global and regional GIS shapes, were used to create spatial allocation profiles for Asia. Temporal allocation and chemical speciation profiles were partly regionalized using Asia-based studies. Initial data production using the developed SMOKE-Asia system was successfully performed. NOx and VOC emissions for the year 2009 were projected to be increased by 50% from those of 1997. The emission hotspots, such as large cities and large point sources, are distinguished in the domain due to spatial allocation. Regional emission peaks were distinguished due to temporally resolved emission information. The PAR (Paraffin carbon bond) and XYL (Xylene and other polyalkyl aromatics) showed the first and second largest emission rate among VOC species. Most of point source emissions are located in layers 3 to 4, which the altitude range reaches 310–550 m AGL. Qualitative inter-comparison between model output and ground/satellite measurement showed good agreements in terms of spatial and temporal patterns. We expect that the result of this study will provide better air quality modeling inputs, which will act as a major step to improve our understanding of Asian air quality. |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
None identified | None identified | None identified | Not applicable | None identified | None provided |
Biophysical Context
|
Elevation ranges from 1552 to 2442 m, on predominately south-facing slopes | Elevation ranges from 1552 to 2442 m, on predominantly south-facing slopes | Elevations ranging from 1552 m to 2442 m, on predominantly south-facing slopes | nearshore; <1.5 km offshore; <12 m depth | submerged aquatic vegetation | Asia |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
No scenarios presented | No scenarios presented | No scenarios presented | Not applicable | No scenarios presented | NA |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application | Method + Application | Method + Application | Method + Application | Method + Application | Method + Application |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
New or revised model | New or revised model | New or revised model | New or revised model | New or revised model | Application of existing model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
Doc-260 | Doc-260 | Doc-269 | Doc-260 | Doc-269 | None | None | Doc-478 |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
EM-66 | EM-68 | EM-69 | EM-70 | EM-71 | EM-79 | EM-80 | EM-81 | EM-82 | EM-83 | EM-65 | EM-66 | EM-68 | EM-69 | EM-70 | EM-79 | EM-80 | EM-81 | EM-82 | EM-83 | EM-65 | EM-66 | EM-68 | EM-69 | EM-70 | EM-71 | EM-80 | EM-81 | EM-82 | EM-83 | None | None | EM-1012 | EM-1021 |
EM Modeling Approach
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
EM Temporal Extent
em.detail.tempExtentHelp
?
|
2007-2009 | 2007-2008 | 2007-2008 | 2006-2007 | 2010 - 2012 | 1997-2009 |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-stationary | time-stationary | time-stationary | time-stationary | time-stationary | time-dependent |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | past time |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | continuous |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
Bounding Type
em.detail.boundingTypeHelp
?
|
Physiographic or Ecological | Physiographic or Ecological | Physiographic or Ecological | Physiographic or Ecological | Physiographic or ecological | Geopolitical |
Spatial Extent Name
em.detail.extentNameHelp
?
|
Central French Alps | Central French Alps | Central French Alps | St.Croix, U.S. Virgin Islands | St. Louis River Estuary | Asia |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
10-100 km^2 | 10-100 km^2 | 10-100 km^2 | 10-100 km^2 | 10-100 km^2 | 1000-10,000 km^2. |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially lumped (in all cases) |
spatially distributed (in at least some cases) ?Comment:BH: Each individual transect?s data was parceled into location reports, and that each report?s ?quadrat? area was dependent upon the angle of the hydroacoustic sampling beam. The spatial grain is 0.07 m^2, 0.20 m^2 and 0.70 m^2 for depths of 1 meter, 2 meters and 3 meters, respectively. |
spatially lumped (in all cases) |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature | Not applicable | area, for pixel or radial feature | Not applicable |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
20 m x 20 m | 20 m x 20 m | 20 m x 20 m | Not applicable | 0.07 m^2 to 0.70 m^2 | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Analytic | Analytic | Analytic | Analytic | Analytic | Analytic |
EM Determinism
em.detail.deterStochHelp
?
|
deterministic | deterministic | deterministic | deterministic | deterministic | deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
|
|
|
|
|
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
Model Calibration Reported?
em.detail.calibrationHelp
?
|
No | No | No | Yes | Yes | Unclear |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
Yes | Yes | Yes | Yes | Yes | Unclear |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
|
|
|
|
|
None |
Model Operational Validation Reported?
em.detail.validationHelp
?
|
Yes | No | No | No | Yes | Yes |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No | No | No | Yes | No | Unclear |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No | No | No | No | No | Unclear |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable |
EM Locations, Environments, Ecology
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
|
|
|
None |
|
|
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
None | None | None |
|
None |
|
Centroid Lat/Long (Decimal Degree)
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
Centroid Latitude
em.detail.ddLatHelp
?
|
45.05 | 45.05 | 45.05 | 17.75 | 46.72 | 38.63 |
Centroid Longitude
em.detail.ddLongHelp
?
|
6.4 | 6.4 | 6.4 | -64.75 | -96.13 | 117.79 |
Centroid Datum
em.detail.datumHelp
?
|
WGS84 | WGS84 | WGS84 | NAD83 | WGS84 | WGS84 |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Provided | Provided | Provided | Estimated | Estimated | Estimated |
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Agroecosystems | Grasslands | Agroecosystems | Grasslands | Agroecosystems | Grasslands | Near Coastal Marine and Estuarine | Aquatic Environment (sub-classes not fully specified) | Rivers and Streams | Inland Wetlands | Lakes and Ponds | Atmosphere |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
Subalpine terraces, grasslands, and meadows | Subalpine terraces, grasslands, and meadows. | Subalpine terraces, grasslands, and meadows | stony coral reef | Freshwater estuarine system | Asian atmosphere |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Not applicable | Not applicable | Ecological scale is coarser than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale corresponds to the Environmental Sub-class | Not applicable |
Scale of differentiation of organisms modeled
EM ID
em.detail.idHelp
?
|
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Community | Community | Community | Guild or Assemblage | Not applicable | Not applicable |
Taxonomic level and name of organisms or groups identified
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
None Available | None Available | None Available |
|
None Available | None Available |
EnviroAtlas URL
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
GAP Ecological Systems | None Available | None Available | None Available | Average Annual Precipitation | None Available |
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
None | None | None |
|
|
|
<a target="_blank" rel="noopener noreferrer" href="https://www.epa.gov/eco-research/national-ecosystem-services-classification-system-nescs-plus">National Ecosystem Services Classification System (NESCS) Plus</a>
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
EM-65 | EM-71 | EM-79 | EM-260 | EM-414 | EM-1019 |
|
None | None |
|
None |
|