EcoService Models Library (ESML)
loading
Compare EMs
Which comparison is best for me?EM Variables by Variable Role
One quick way to compare ecological models (EMs) is by comparing their variables. Predictor variables show what kinds of influences a model is able to account for, and what kinds of data it requires. Response variables show what information a model is capable of estimating.
This first comparison shows the names (and units) of each EM’s variables, side-by-side, sorted by variable role. Variable roles in ESML are as follows:
- Predictor Variables
- Time- or Space-Varying Variables
- Constants and Parameters
- Intermediate (Computed) Variables
- Response Variables
- Computed Response Variables
- Measured Response Variables
EM Variables by Category
A second way to use variables to compare EMs is by focusing on the kind of information each variable represents. The top-level categories in the ESML Variable Classification Hierarchy are as follows:
- Policy Regarding Use or Management of Ecosystem Resources
- Land Surface (or Water Body Bed) Cover, Use or Substrate
- Human Demographic Data
- Human-Produced Stressor or Enhancer of Ecosystem Goods and Services Production
- Ecosystem Attributes and Potential Supply of Ecosystem Goods and Services
- Non-monetary Indicators of Human Demand, Use or Benefit of Ecosystem Goods and Services
- Monetary Values
Besides understanding model similarities, sorting the variables for each EM by these 7 categories makes it easier to see if the compared models can be linked using similar variables. For example, if one model estimates an ecosystem attribute (in Category 5), such as water clarity, as a response variable, and a second model uses a similar attribute (also in Category 5) as a predictor of recreational use, the two models can potentially be used in tandem. This comparison makes it easier to spot potential model linkages.
All EM Descriptors
This selection allows a more detailed comparison of EMs by model characteristics other than their variables. The 50-or-so EM descriptors for each model are presented, side-by-side, in the following categories:
- EM Identity and Description
- EM Modeling Approach
- EM Locations, Environments, Ecology
- EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
EM Descriptors by Modeling Concepts
This feature guides the user through the use of the following seven concepts for comparing and selecting EMs:
- Conceptual Model
- Modeling Objective
- Modeling Context
- Potential for Model Linkage
- Feasibility of Model Use
- Model Certainty
- Model Structural Information
Though presented separately, these concepts are interdependent, and information presented under one concept may have relevance to other concepts as well.
EM Identity and Description
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
EM Short Name
em.detail.shortNameHelp
?
|
Divergence in flowering date, Central French Alps | Cultural ES and plant traits, Central French Alps | Annual profit - carbon plantings, South Australia | InVEST crop pollination, NJ and PA, USA | Decrease in erosion (shoreline), St. Croix, USVI |
EM Full Name
em.detail.fullNameHelp
?
|
Functional divergence in flowering date, Central French Alps | Cultural ecosystem service estimated from plant functional traits, Central French Alps | Annual profit from carbon plantings, South Australia | InVEST crop pollination, New Jersey and Pennsylvania, USA | Decrease in erosion (shoreline) by reef, St. Croix, USVI |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
EU Biodiversity Action 5 | EU Biodiversity Action 5 | None | InVEST | US EPA |
EM Source Document ID
|
260 | 260 | 243 | 279 | 335 |
Document Author
em.detail.documentAuthorHelp
?
|
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Crossman, N. D., Bryan, B. A., and Summers, D. M. | Lonsdorf, E., Kremen, C., Ricketts, T., Winfree, R., Williams, N., and S. Greenleaf | Yee, S. H., Dittmar, J. A., and L. M. Oliver |
Document Year
em.detail.documentYearHelp
?
|
2011 | 2011 | 2011 | 2009 | 2014 |
Document Title
em.detail.sourceIdHelp
?
|
Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Carbon payments and low-cost conservation | Modelling pollination services across agricultural landscapes | Comparison of methods for quantifying reef ecosystem services: A case study mapping services for St. Croix, USVI |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript |
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
Not applicable | Not applicable | Not applicable | http://www.naturalcapitalproject.org/models/crop_pollination.html | Not applicable | |
Contact Name
em.detail.contactNameHelp
?
|
Sandra Lavorel | Sandra Lavorel | Neville D. Crossman | Eric Lonsdorf | Susan H. Yee |
Contact Address
|
Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | CSIRO Ecosystem Sciences, PMB 2, Glen Osmond, South Australia, 5064, Australia | Conservation and Science Dept, Linclon Park Zoo, 2001 N. Clark St, Chicago, IL 60614, USA | US EPA, Office of Research and Development, NHEERL, Gulf Ecology Division, Gulf Breeze, FL 32561, USA |
Contact Email
|
sandra.lavorel@ujf-grenoble.fr | sandra.lavorel@ujf-grenoble.fr | neville.crossman@csiro.au | ericlonsdorf@lpzoo.org | yee.susan@epa.gov |
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
Summary Description
em.detail.summaryDescriptionHelp
?
|
ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services. Vegetative height and leaf traits such as leaf dry matter content were response traits strongly influenced by land use and abiotic environment, with follow-on effects on several ecosystem properties, and could therefore be used as functional markers of ES." AUTHOR'S DESCRIPTION: "Functional divergence of flowering date was modelled using mixed models with land use and abiotic variables as fixed effects (LU + abiotic model) and year as a random effect…and modelled for each 20 x 20 m pixel using GLM estimated effects for each land use category and estimated regression coefficients with abiotic variables." | ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services." AUTHOR'S DESCRIPTION: "The Cultural ecosystem service map was a simple sum of maps for relevant Ecosystem Properties (produced in related EMs) after scaling to a 0–100 baseline and trimming outliers to the 5–95% quantiles (Venables&Ripley 2002)…Coefficients used for the summing of individual ecosystem properties to cultural ecosystem services were based on stakeholders’ perceptions, given positive or negative contributions." | ABSTRACT: "A price on carbon is expected to generate demand for carbon offset schemes. This demand could drive investment in tree-based monocultures that provide higher carbon yields than diverse plantings of native tree and shrub species, which sequester less carbon but provide greater variation in vegetation structure and composition. Economic instruments such as species conservation banking, the creation and trading of credits that represent biological-diversity values on private land, could close the financial gap between monocultures and more diverse plantings by providing payments to individuals who plant diverse species in locations that contribute to conservation and restoration goals. We studied a highly modified agricultural system in southern Australia that is typical of many temperate agriculture zones globally (i.e., has a high proportion of endangered species, high levels of habitat fragmentation, and presence of non-native species). We quantified the economic returns...from carbon plantings (monoculture and mixed tree and shrubs) under six carbon-price scenarios." AUTHOR'S DESCRIPTION: "The economic returns of carbon plantings are highly variable and depend primarily on carbon yield and price and opportunity costs (Newell & Stavins 2000; Richards & Stokes 2004; Torres et al. 2010)...The spatial variation in carbon yield and costs, including establishment, maintenance, transaction, and opportunity costs, means that the net economic returns of carbon plantings are also likely to vary spatially." | Please note: This ESML entry describes a specific, published application of an InVEST model. Different versions (e.g. different tiers) or more recent versions of this model may be available at the InVEST website. ABSTRACT: "Background and Aims: Crop pollination by bees and other animals is an essential ecosystem service. Ensuring the maintenance of the service requires a full understanding of the contributions of landscape elements to pollinator populations and crop pollination. Here, the first quantitative model that predicts pollinator abundance on a landscape is described and tested. Methods: Using information on pollinator nesting resources, floral resources and foraging distances, the model predicts the relative abundance of pollinators within nesting habitats. From these nesting areas, it then predicts relative abundances of pollinators on the farms requiring pollination services. Model outputs are compared with data from coffee in Costa Rica, watermelon and sunflower in California and watermelon in New Jersey–Pennsylvania (NJPA). Key Results: Results from Costa Rica and California, comparing field estimates of pollinator abundance, richness or services with model estimates, are encouraging, explaining up to 80 % of variance among farms. However, the model did not predict observed pollinator abundances on NJPA, so continued model improvement and testing are necessary. The inability of the model to predict pollinator abundances in the NJPA landscape may be due to not accounting for fine-scale floral and nesting resources within the landscapes surrounding farms, rather than the logic of our model. Conclusions: The importance of fine-scale resources for pollinator service delivery was supported by sensitivity analyses indicating that the model's predictions depend largely on estimates of nesting and floral resources within crops. Despite the need for more research at the finer-scale, the approach fills an important gap by providing quantitative and mechanistic model from which to evaluate policy decisions and develop land-use plans that promote pollination conservation and service delivery." | ABSTRACT: "...We investigated and compared a number of existing methods for quantifying ecological integrity, shoreline protection, recreational opportunities, fisheries production, and the potential for natural products discovery from reefs. Methods were applied to mapping potential ecosystem services production around St. Croix, U.S. Virgin Islands. Overall, we found that a number of different methods produced similar predictions." AUTHOR'S DESCRIPTION: "A number of methods have been developed for linking biophysical attributes of reef condition, such as reef structural complexity, fish biomass, or species richness, to provisioning of ecosystem goods and services (Principe et al., 2012). We investigated the feasibility of using existing methods and data for mapping production of reef ecosystem goods and services. We applied these methods toward mapping potential ecosystem goods and services production in St. Croix, U.S. Virgin Islands (USVI)...For each of the five categories of ecosystem services, we chose a suite of models and indices for estimating potential production based on relative ease of implementation, consisting of well-defined parameters, and likely availability of input data, to maximize potential for transferability to other locations. For each method, we assembled the necessary reef condition and environmental data as spatial data layers for St. Croix (Table1). The coastal zone surrounding St. Croix was divided into 10x10 m grid cells, and production functions were applied to quantify ecosystem services provisioning in each grid cell...Shoreline protection as an ecosystem service has been defined in a number of ways including protection from shoreline erosion...and can thus be estimated as % Decrease in erosion due to reef = 1 - (Ho/H)^2.5 where Ho is the attenuated wave height due to the presence of the reef and H is wave height in the absence of the reef." |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
None identified | None identified | None identified | None identified | None identified |
Biophysical Context
|
Elevations ranging from 1552 m to 2442 m, on predominantly south-facing slopes | Elevations ranging from 1552 m to 2442 m, on predominantly south-facing slopes | Mix of remnant native vegetation and agricultural land. Remnant vegetation is in 20 large (>10,000 ha) contiguous fragments where rainfall is low. Acacia spp. and Eucalyptus spp. are the dominant tree species in the remnant vegetation, and major native vegetation types are open forests, woodlands, and open woodlands. Dominant agricultural uses are annual crops, annual legumes, and grazing of sheep and cows. The climate is Mediterranean with average annual rainfall ranging from 250 mm to 1000 mm. | No additional description provided | No additional description provided |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
No scenarios presented | No scenarios presented | Carbon prices at $10/t CO2^-e, $15/t CO2^-e, $20/t CO2^-e, $25/t CO2^-e, $30/t CO2^-e, and $40/t CO2^-e | No scenarios presented | No scenarios presented |
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application | Method + Application |
Method + Application (multiple runs exist) View EM Runs ?Comment:Runs are differentiated based on the the expected annual profit from two types of carbon plantings: 1) Tree-based monocultures (i.e., monoculture carbon planting) and 2) Diverse plantings of native tree and shrub species (i.e., ecological carbon planting) |
Method + Application | Method + Application |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
New or revised model | New or revised model | New or revised model | New or revised model | Application of existing model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
Doc-260 | Doc-269 | None | Doc-245 | Doc-246 | Doc-247 | Doc-243 | Doc-279 | Doc-335 |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
EM-65 | EM-66 | EM-68 | EM-69 | EM-70 | EM-71 | EM-80 | EM-81 | EM-82 | EM-83 | EM-65 | EM-66 | EM-68 | EM-69 | EM-70 | EM-71 | EM-79 | EM-80 | EM-82 | EM-83 | EM-128 | EM-141 | EM-340 | EM-338 | EM-447 | EM-448 |
EM Modeling Approach
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
EM Temporal Extent
em.detail.tempExtentHelp
?
|
2007-2008 | Not reported | 2009-2050 | 2000-2002 | 2006-2007, 2010 |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-stationary | time-stationary | time-dependent | time-stationary | time-stationary |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
Not applicable | Not applicable | future time | Not applicable | Not applicable |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
Not applicable | Not applicable | discrete | Not applicable | Not applicable |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
Not applicable | Not applicable | 1 | Not applicable | Not applicable |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Not applicable | Not applicable | Year | Not applicable | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
Bounding Type
em.detail.boundingTypeHelp
?
|
Physiographic or Ecological | Physiographic or Ecological | Physiographic or Ecological | Other | Physiographic or ecological |
Spatial Extent Name
em.detail.extentNameHelp
?
|
Central French Alps | Central French Alps | Agricultural districts of the state of South Australia | Central New Jersey and east-central Pennsylvania | Coastal zone surrounding St. Croix |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
10-100 km^2 | 10-100 km^2 | 100,000-1,000,000 km^2 | 1000-10,000 km^2. | 100-1000 km^2 |
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially distributed (in at least some cases) |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
20 m x 20 m | 20 m x 20 m | 1 ha x 1 ha | 30 m x 30 m | 10 m x 10 m |
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Analytic | Analytic | Analytic | Analytic | Analytic |
EM Determinism
em.detail.deterStochHelp
?
|
deterministic | deterministic | deterministic | deterministic | deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
|
|
|
|
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
Model Calibration Reported?
em.detail.calibrationHelp
?
|
No | No | No | Unclear | Yes |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
Yes | No | No | No | No |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
|
None | None | None | None |
Model Operational Validation Reported?
em.detail.validationHelp
?
|
No | No | No |
Yes ?Comment:Aggregate native bee abundance on watermelon flowers was measured at 23 sites in 2005. Species richness was measured using the specimens collected from watermelon flowers at the end of the sampling period. |
Yes |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No | No | No | No | No |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No | No | No | No | No |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable |
EM Locations, Environments, Ecology
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
|
|
|
|
None |
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
None | None | None | None |
|
Centroid Lat/Long (Decimal Degree)
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
Centroid Latitude
em.detail.ddLatHelp
?
|
45.05 | 45.05 | -34.9 | 40.2 | 17.73 |
Centroid Longitude
em.detail.ddLongHelp
?
|
6.4 | 6.4 | 138.7 | -74.8 | -64.77 |
Centroid Datum
em.detail.datumHelp
?
|
WGS84 | WGS84 | WGS84 | WGS84 | WGS84 |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Provided | Provided | Estimated | Estimated | Estimated |
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Agroecosystems | Grasslands | Agroecosystems | Grasslands | Agroecosystems | Terrestrial Environment (sub-classes not fully specified) | Agroecosystems | Near Coastal Marine and Estuarine |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
Subalpine terraces, grasslands, and meadows | Subalpine terraces, grasslands, and meadows. | Agricultural land for annual crops, annual legumes, and grazing of sheep and cows | Cropland and surrounding landscape | Coral reefs |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Ecological scale is coarser than that of the Environmental Sub-class | Ecological scale is coarser than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class |
Scale of differentiation of organisms modeled
EM ID
em.detail.idHelp
?
|
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Community | Community | Guild or Assemblage | Species | Not applicable |
Taxonomic level and name of organisms or groups identified
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
None Available | None Available |
|
|
None Available |
EnviroAtlas URL
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
None Available | GAP Ecological Systems | Carbon Storage by Tree Biomass | GAP Ecological Systems | National Hydrography Dataset Plus (NHD PlusV2) |
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
None |
|
|
|
|
<a target="_blank" rel="noopener noreferrer" href="https://www.epa.gov/eco-research/national-ecosystem-services-classification-system-nescs-plus">National Ecosystem Services Classification System (NESCS) Plus</a>
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
EM-79 | EM-81 |
EM-127 ![]() |
EM-339 | EM-449 |
None | None | None |
|
|