EcoService Models Library (ESML)
loading
Compare EMs
Which comparison is best for me?EM Variables by Variable Role
One quick way to compare ecological models (EMs) is by comparing their variables. Predictor variables show what kinds of influences a model is able to account for, and what kinds of data it requires. Response variables show what information a model is capable of estimating.
This first comparison shows the names (and units) of each EM’s variables, side-by-side, sorted by variable role. Variable roles in ESML are as follows:
- Predictor Variables
- Time- or Space-Varying Variables
- Constants and Parameters
- Intermediate (Computed) Variables
- Response Variables
- Computed Response Variables
- Measured Response Variables
EM Variables by Category
A second way to use variables to compare EMs is by focusing on the kind of information each variable represents. The top-level categories in the ESML Variable Classification Hierarchy are as follows:
- Policy Regarding Use or Management of Ecosystem Resources
- Land Surface (or Water Body Bed) Cover, Use or Substrate
- Human Demographic Data
- Human-Produced Stressor or Enhancer of Ecosystem Goods and Services Production
- Ecosystem Attributes and Potential Supply of Ecosystem Goods and Services
- Non-monetary Indicators of Human Demand, Use or Benefit of Ecosystem Goods and Services
- Monetary Values
Besides understanding model similarities, sorting the variables for each EM by these 7 categories makes it easier to see if the compared models can be linked using similar variables. For example, if one model estimates an ecosystem attribute (in Category 5), such as water clarity, as a response variable, and a second model uses a similar attribute (also in Category 5) as a predictor of recreational use, the two models can potentially be used in tandem. This comparison makes it easier to spot potential model linkages.
All EM Descriptors
This selection allows a more detailed comparison of EMs by model characteristics other than their variables. The 50-or-so EM descriptors for each model are presented, side-by-side, in the following categories:
- EM Identity and Description
- EM Modeling Approach
- EM Locations, Environments, Ecology
- EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
EM Descriptors by Modeling Concepts
This feature guides the user through the use of the following seven concepts for comparing and selecting EMs:
- Conceptual Model
- Modeling Objective
- Modeling Context
- Potential for Model Linkage
- Feasibility of Model Use
- Model Certainty
- Model Structural Information
Though presented separately, these concepts are interdependent, and information presented under one concept may have relevance to other concepts as well.
EM Identity and Description
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
EM Short Name
em.detail.shortNameHelp
?
|
Area & hotspots of soil accumulation, South Africa | OpenNSPECT v. 1.2 |
EM Full Name
em.detail.fullNameHelp
?
|
Area and hotspots of soil accumulation, South Africa | OpenNSPECT v. 1.2 |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
None | None |
EM Source Document ID
|
271 | 431 |
Document Author
em.detail.documentAuthorHelp
?
|
Egoh, B., Reyers, B., Rouget, M., Richardson, D.M., Le Maitre, D.C., and van Jaarsveld, A.S. | Eslinger, David L., H. Jamieson Carter, Matt Pendleton, Shan Burkhalter, Margaret Allen |
Document Year
em.detail.documentYearHelp
?
|
2008 | 2012 |
Document Title
em.detail.sourceIdHelp
?
|
Mapping ecosystem services for planning and management | “OpenNSPECT: The Open-source Nonpoint Source Pollution and Erosion Comparison Tool.” NOAA Office for Coastal Management, Charleston, South Carolina. Accessed (11/2022) at https://coast.noaa.gov/digitalcoast/tools/opennspect.html |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published | Peer reviewed and published |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript | Webpage |
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
Not applicable | https://coast.noaa.gov/digitalcoast/tools/opennspect.html | |
Contact Name
em.detail.contactNameHelp
?
|
Benis Egoh | Not reported |
Contact Address
|
Water Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Italy | NOAA Coastal Services Center, 2234 South Hobson Avenue Charleston, South Carolina 29405-2413 |
Contact Email
|
Not reported | Not reported |
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
Summary Description
em.detail.summaryDescriptionHelp
?
|
AUTHOR'S DESCRIPTION: "We define the range of ecosystem services as areas of meaningful supply, similar to a species’ range or area of occupancy. The term ‘‘hotspots’’ was proposed by Norman Myers in the 1980s and refers to areas of high species richness, endemism and/or threat and has been widely used to prioritise areas for biodiversity conservation. Similarly, this study suggests that hotspots for ecosystem services are areas of critical management importance for the service. Here the term ecosystem service hotspot is used to refer to areas which provide large proportions of a particular service, and do not include measures of threat or endemism…Soil scientists often use soil depth to model soil production potential (soil formation) (Heimsath et al., 1997; Yuan et al., 2006). The accumulation of soil organic matter is an important process of soil formation which can be badly affected by habitat degradation and transformation (de Groot et al., 2002). Soil depth and leaf litter were used as proxies for soil accumulation. Soil depth is positively correlatedwith soil organic matter (Yuan et al., 2006); deep soils have the capacity to hold more nutrients. Litter cover was described above. Data on soil depth were obtained from the land capability map of South Africa and thresholds were based on the literature (Schoeman et al., 2002; Tekle, 2004). Areas with at least 0.4 m depth and 30% litter cover were mapped as important areas for soil accumulation, i.e. its geographic range. The hotspot was mapped as areas with at least 0.8 m depth and a 70% litter cover." | "This open-source version of the Nonpoint Source Pollution and Erosion Comparison Tool is used to investigate potential water quality impacts from climate change and development to other land uses. The downloadable tool is designed to be broadly applicable for coastal and noncoastal areas alike. Tool functions simulate erosion, pollution, and the accumulation from overland flow. OpenNSPECT uses spatial elevation data to calculate flow direction and flow accumulation throughout a watershed. To do this, land cover, precipitation, and soils data are processed to estimate runoff volume at both the local and watershed levels. Coefficients representing the contribution of each land cover class to the expected pollutant load are also applied to land cover data to approximate total pollutant loads. These coefficients are taken from published sources or can be derived from local water quality studies. The output layers display estimates of runoff volume, pollutant loads, pollutant concentration, and total sediment yield. Requires MapWindow GIS v.4.8.8 (open source software)" |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
None identified | None identified |
Biophysical Context
|
Semi-arid environment. Rainfall varies geographically from less than 50 to about 3000 mm per year (annual mean 450 mm). Soils are mostly very shallow with limited irrigation potential. | No additional description provided |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
No scenarios presented | No scenarios presented |
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application | Method Only |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
New or revised model | New or revised model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
Doc-271 | None |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
EM-85 | EM-86 | EM-88 | EM-940 |
EM Modeling Approach
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
EM Temporal Extent
em.detail.tempExtentHelp
?
|
Not reported | Not applicable |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-stationary | time-stationary |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
Not applicable | Not applicable |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
Not applicable | Not applicable |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
Not applicable | Not applicable |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Not applicable | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
Bounding Type
em.detail.boundingTypeHelp
?
|
Geopolitical | Not applicable |
Spatial Extent Name
em.detail.extentNameHelp
?
|
South Africa | Not applicable |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
>1,000,000 km^2 | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) | spatially distributed (in at least some cases) |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
other (specify), for irregular (e.g., stream reach, lake basin) | area, for pixel or radial feature |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
Distributed across catchments with average size of 65,000 ha | 30 m |
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Analytic | Analytic |
EM Determinism
em.detail.deterStochHelp
?
|
deterministic | deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
|
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
Model Calibration Reported?
em.detail.calibrationHelp
?
|
No | Not applicable |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
No | Not applicable |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
None | None |
Model Operational Validation Reported?
em.detail.validationHelp
?
|
No | Not applicable |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No | Not applicable |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No | Not applicable |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable | Not applicable |
EM Locations, Environments, Ecology
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
EM-87 | EM-938 |
|
None |
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
EM-87 | EM-938 |
None | None |
Centroid Lat/Long (Decimal Degree)
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
Centroid Latitude
em.detail.ddLatHelp
?
|
-30 | Not applicable |
Centroid Longitude
em.detail.ddLongHelp
?
|
25 | Not applicable |
Centroid Datum
em.detail.datumHelp
?
|
WGS84 | Not applicable |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Estimated | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Terrestrial Environment (sub-classes not fully specified) | Aquatic Environment (sub-classes not fully specified) | Near Coastal Marine and Estuarine | Terrestrial Environment (sub-classes not fully specified) |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
Not applicable | Coastal and non-coastal |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Ecological scale corresponds to the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class |
Scale of differentiation of organisms modeled
EM ID
em.detail.idHelp
?
|
EM-87 | EM-938 |
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Not applicable | Not applicable |
Taxonomic level and name of organisms or groups identified
EM-87 | EM-938 |
None Available | None Available |
EnviroAtlas URL
EM-87 | EM-938 |
None Available | Average Annual Precipitation |
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
EM-87 | EM-938 |
|
|
<a target="_blank" rel="noopener noreferrer" href="https://www.epa.gov/eco-research/national-ecosystem-services-classification-system-nescs-plus">National Ecosystem Services Classification System (NESCS) Plus</a>
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
EM-87 | EM-938 |
None | None |