EcoService Models Library (ESML)
loading
EM: VELMA (Visualizing Ecosystems for Land Management Assessments) plant-soil, Oregon, USA (EM-380)
View EM Runs
Collapse All
Expand All
- Export Data to Spreadsheet (Free Viewers)
- View Variable Relationship Diagram (PDF)(1 pp, 80 KB, About PDF)
EM Identity and Description
EM Identification
EM ID
em.detail.idHelp
?
|
EM-380 |
EM Short Name
em.detail.shortNameHelp
?
|
VELMA plant-soil, Oregon, USA |
EM Full Name
em.detail.fullNameHelp
?
|
VELMA (Visualizing Ecosystems for Land Management Assessments) plant-soil, Oregon, USA |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
US EPA |
EM Source Document ID
|
317 |
Document Author
em.detail.documentAuthorHelp
?
|
Abdelnour, A., McKane, R. B., Stieglitz, M., Pan, F., and Chen, Y. |
Document Year
em.detail.documentYearHelp
?
|
2013 |
Document Title
em.detail.sourceIdHelp
?
|
Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript |
Software and Access
Bob McKane, VELMA Team Lead, USEPA-ORD-NHEERL-WED, Corvallis, OR (541) 754-4631; mckane.bob@epa.gov | |
Contact Name
em.detail.contactNameHelp
?
|
Alex Abdelnour |
Contact Address
|
Dept. of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA |
Contact Email
|
abdelnouralex@gmail.com |
EM Description
Summary Description
em.detail.summaryDescriptionHelp
?
|
ABSTRACT: "We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where two major disturbance events have occurred during the past 500 years: a stand-replacing fire circa 1525 and a clear-cut in 1975. Hydrological and biogeochemical data from this site and other Pacific Northwest forest ecosystems were used to calibrate the model. Model parameters were first calibrated to simulate the postfire buildup of ecosystem carbon and nitrogen stocks in plants and soil from 1525 to 1969, the year when stream flow and chemistry measurements were begun. Thereafter, the model was used to simulate old-growth (1969–1974) and postharvest (1975–2008) temporal changes in carbon and nitrogen dynamics…" AUTHOR'S DESCRIPTION: "The soil column model consists of three coupled submodels:...a plant-soil model (Figure (A3)) that simulates ecosystem carbon storage and the cycling of C and N between a plant biomass layer and the active soil pools. Specifically, the plant-soil model simulates the interaction among aboveground plant biomass, soil organic carbon (SOC), soil nitrogen including dissolved nitrate (NO3), ammonium (NH4), and organic nitrogen, as well as DOC (equations (A7)–(A12)). Daily atmospheric inputs of wet and dry nitrogen deposition are accounted for in the ammonium pool of the shallow soil layer (equation (A13)). Uptake of ammonium and nitrate by plants is modeled using a Type II Michaelis-Menten function (equation (A14)). Loss of plant biomass is simulated through a density-dependent mortality. The mortality rate and the nitrogen uptake rate mimic the exponential increase in biomass mortality and the accelerated growth rate, respectively, as plants go through succession and reach equilibrium (equations (A14)–(A18)). Vertical transport of nutrients from one layer to another in a soil column is a function of water drainage (equations (A19)–(A22)). Decomposition of SOC follows first-order kinetics controlled by soil temperature and moisture content as described in the terrestrial ecosystem model (TEM) of Raich et al. [1991] (equations (A23)–(A26)). Nitrification (equations (A27)–(A30)) and denitrification (equations (A31)–(A34)) were simulated using the equations from the generalized model of N2 and N2O production of Parton et al. [1996, 2001] and Del Grosso et al. [2000]. [12] The soil column model is placed within a catchment framework to create a spatially distributed model applicable to watersheds and landscapes. Adjacent soil columns interact with each other through the downslope lateral transport of water and nutrients (Figure (A1)). Surface and subsurface lateral flow are routed using a multiple flow direction method [Freeman, 1991; Quinn et al., 1991]. As with vertical drainage of soil water, lateral subsurface downslope flow i |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
None identified |
Biophysical Context
|
Basin elevation ranges from 430 m at the stream gauging station to 700 m at the southeastern ridgeline. Near stream and side slope gradients are approximately 24o and 25o to 50o, respectively. The climate is relatively mild with wet winters and dry summer. Mean annual temperature is 8.5 oC. Daily temperature extremes vary from 39 oC in the summer to -20 oC in the winter. |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
Forest management (harvest/no harvest) |
EM Relationship to Other EMs or Applications
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application (multiple runs exist) View EM Runs |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
New or revised model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
em.detail.relatedEmHelp
?
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
Doc-13 | Doc-317 |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
EM-375 | EM-379 | EM-884 | EM-883 | EM-887 |
EM Modeling Approach
EM Relationship to Time
EM Temporal Extent
em.detail.tempExtentHelp
?
|
1969-2008 |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-dependent |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
future time |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
discrete |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
1 |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Day |
EM Spatial Extent
Bounding Type
em.detail.boundingTypeHelp
?
|
Watershed/Catchment/HUC |
Spatial Extent Name
em.detail.extentNameHelp
?
|
H. J. Andrews LTER WS10 |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
10-100 ha |
Spatial Distribution of Computations
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
other (specify), for irregular (e.g., stream reach, lake basin) |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
30 m x 30 m surface pixel and 2-m depth soil column |
EM Structure and Computation Approach
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Numeric |
EM Determinism
em.detail.deterStochHelp
?
|
deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
Model Checking Procedures Used
Model Calibration Reported?
em.detail.calibrationHelp
?
|
Yes |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
No |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
None |
Model Operational Validation Reported?
em.detail.validationHelp
?
|
No |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
Yes |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
No |
EM Locations, Environments, Ecology
Location of EM Application
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
em.detail.relationToSpaceTerrestrialHelp
?
|
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
em.detail.relationToSpaceMarineHelp
?
None |
Centroid Lat/Long (Decimal Degree)
Centroid Latitude
em.detail.ddLatHelp
?
|
44.25 |
Centroid Longitude
em.detail.ddLongHelp
?
|
-122.33 |
Centroid Datum
em.detail.datumHelp
?
|
WGS84 |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Provided |
Environments and Scales Modeled
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Rivers and Streams | Ground Water | Forests |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
400 to 500 year old forest dominated by Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), and western red cedar (Thuja plicata). |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Ecological scale corresponds to the Environmental Sub-class |
Scale and taxa of organisms modeled
Scale of differentiation of organisms modeled
em.detail.nameOfOrgsOrGroupsHelp
?
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Not applicable |
Taxonomic level and name of organisms or groups identified
taxonomyHelp
?
None Available |
EnviroAtlas URL
em.detail.enviroAtlasURLHelp
?
GAP Ecological Systems, Average Annual Precipitation, Total Annual Reduced Nitrogen Deposition, Total Annual Nitrogen Deposition |
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
em.detail.cicesHelp
?
None |
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
fegs2Help
?
None |
EM Variable Names (and Units)
Predictor
em.detail.variablesPredictorHelp
?
Intermediate
Intermediate (Computed) Variables (and Units)
em.detail.intermediateVariableHelp
?
|
None |
Response
em.detail.variablesResponseHelp
?