EcoService Models Library (ESML)
loading
EM: Sediment denitrification, St. Louis River, MN/WI, USA (EM-496)
View EM Runs
EM Identity and Description
EM Identification
EM ID
em.detail.idHelp
?
|
EM-496 |
EM Short Name
em.detail.shortNameHelp
?
|
Sed. denitrification, St. Louis R., MN/WI, USA |
EM Full Name
em.detail.fullNameHelp
?
|
Sediment denitrification, St. Louis River, MN/WI, USA |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
US EPA |
EM Source Document ID
|
333 |
Document Author
em.detail.documentAuthorHelp
?
|
Brent J. Bellinger, Terri M. Jicha, LaRae P. Lehto, Lindsey R. Seifert-Monson, David W. Bolgrien, Matthew A. Starry, Theodore R. Angradi, Mark S. Pearson, Colleen Elonen, and Brian H. Hill |
Document Year
em.detail.documentYearHelp
?
|
2014 |
Document Title
em.detail.sourceIdHelp
?
|
Sediment nitrification and denitrification in a Lake Superior estuary |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript |
Software and Access
Not applicable | |
Contact Name
em.detail.contactNameHelp
?
|
Brent J. Bellinger ?Comment:Ph# +1 218 529 5247. Other current address: Superior Water, Light and Power Company, 2915 Hill Ave., Superior, WI 54880, USA. |
Contact Address
|
U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA |
Contact Email
|
bellinger.brent@epa.gov |
EM Description
Summary Description
em.detail.summaryDescriptionHelp
?
|
ABSTRACT: "Inorganic nitrogen (N) transformations and removal in aquatic sediments are microbially mediated, and rates influence N-transport. In this study we related physicochemical properties of a large Great Lakes embayment, the St. Louis River Estuary (SLRE) of western Lake Superior, to sediment N-transformation rates. We tested for associations among rates and N-inputs, vegetation biomass, and temperature. We measured rates of nitrification (NIT), unamended base denitrification (DeNIT), and potential denitrification [denitrifying enzyme activity (DEA)] in 2011 and 2012 across spatial and depth zones…Nitrogen cycling rates were spatially and temporally variable, but we modeled how alterations to water depth and N-inputs may impact DeNIT rates." AUTHOR'S DESCRIPTION: "We used different survey designs in 2011 and 2012. Both designs were based on area-weighted probability sampling methods, similar to those developed for EPA's Environmental Monitoring and Assessment Program (EMAP) (Crane et al., 2005; Stevens and Olsen, 2003, 2004). Sampling sites were assigned to spatial zones: “harbor” (river km 0–13), “bay” (river km 13–24), or “river” (river km 24–35) (Fig. 1). Sites were also grouped by depth zones (“shallow,” <1 m; “intermediate,” 1–2 m; and “deep,” >2 m). In 2011 (“vegetated-habitat survey”), the sample frame consisted of areas of emergent and submergent vegetation in the SLRE… The resulting sample frame included 2370 ha of potentially vegetated area out of a total SLRE area of 4378 ha. Sixty sites were distributed across the total vegetated area in each spatial zone using an uneven spatially balanced probabilistic design. Vegetated areas were more prevalent, and thus had greater sampling effort, in the bay (n = 33) and river (n = 17) than harbor (n=10) zones, and in the shallow (n=44) and intermediate (n =14) than deep (n =2) zones. All sampling was done in July. In 2012 a probabilistic sampling design (“estuary-wide survey”) was implemented to determine N-cycling rates for the entire SLRE (not just vegetated areas as in 2011). Thirty sites unevenly distributed across spatial and depth zones were sampled monthly in May–September (Fig. 1). Area weighting for each sampled site reflects the SLRE area attributable to each sample by month, spatial zone, and depth zone." "…we were able to create significant predictive models for NIT and DeNIT rates using linear combinations of physiochemical parameters…" "…Simulations of changes in DeNIT rates in response to altered water depth and surface NOx-N concentration for spring (Fig. 4A) and summer (Fig. 4B) show that for a given season, altering water depths would have a greater influence on DeNIT than rising NO3- concentration." |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
None identified |
Biophysical Context
|
No additional description provided |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
No scenarios presented |
EM Relationship to Other EMs or Applications
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application (multiple runs exist) View EM Runs |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
New or revised model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
em.detail.relatedEmHelp
?
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
None |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
None |
EM Modeling Approach
EM Relationship to Time
EM Temporal Extent
em.detail.tempExtentHelp
?
|
July 2011 to September 2012 ?Comment:All sampling performed July 2011, and May-September 2012. |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-stationary |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
Not applicable |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
Not applicable |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
Not applicable |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Not applicable |
EM Spatial Extent
Bounding Type
em.detail.boundingTypeHelp
?
|
Physiographic or ecological |
Spatial Extent Name
em.detail.extentNameHelp
?
|
St. Louis River Estuary (of western Lake Superior) |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
10-100 km^2 |
Spatial Distribution of Computations
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
other (specify), for irregular (e.g., stream reach, lake basin) |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
35 km river estuary reach, 0 to 5 m depth by 1 m increment |
EM Structure and Computation Approach
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Analytic |
EM Determinism
em.detail.deterStochHelp
?
|
deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
|
Model Checking Procedures Used
Model Calibration Reported?
em.detail.calibrationHelp
?
|
Yes |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
Yes |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
|
Model Operational Validation Reported?
em.detail.validationHelp
?
|
No |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable |
EM Locations, Environments, Ecology
Location of EM Application
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
em.detail.relationToSpaceTerrestrialHelp
?
|
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
em.detail.relationToSpaceMarineHelp
?
None |
Centroid Lat/Long (Decimal Degree)
Centroid Latitude
em.detail.ddLatHelp
?
|
46.74 |
Centroid Longitude
em.detail.ddLongHelp
?
|
-96.13 |
Centroid Datum
em.detail.datumHelp
?
|
WGS84 |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Estimated |
Environments and Scales Modeled
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Rivers and Streams | Inland Wetlands |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
River and riverine estuary (lake) |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Ecological scale is finer than that of the Environmental Sub-class |
Scale and taxa of organisms modeled
Scale of differentiation of organisms modeled
em.detail.nameOfOrgsOrGroupsHelp
?
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Not applicable |
Taxonomic level and name of organisms or groups identified
taxonomyHelp
?
None Available |
EnviroAtlas URL
em.detail.enviroAtlasURLHelp
?
Total Annual Reduced Nitrogen Deposition, Total Annual Nitrogen Deposition |
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
em.detail.cicesHelp
?
|
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
fegs2Help
?
None |
EM Variable Names (and Units)
Predictor
em.detail.variablesPredictorHelp
?
Intermediate
Intermediate (Computed) Variables (and Units)
em.detail.intermediateVariableHelp
?
|
None |
Response
em.detail.variablesResponseHelp
?
Observed Response Variables (and Units)
em.detail.observedResponseHelp
?
|
None |
Computed Response Variables (and Units)
view details (1 variable)
em.detail.computedResponseHelp
?
|