EcoService Models Library (ESML)
loading
Compare EMs
Which comparison is best for me?EM Variables by Variable Role
One quick way to compare ecological models (EMs) is by comparing their variables. Predictor variables show what kinds of influences a model is able to account for, and what kinds of data it requires. Response variables show what information a model is capable of estimating.
This first comparison shows the names (and units) of each EM’s variables, side-by-side, sorted by variable role. Variable roles in ESML are as follows:
- Predictor Variables
- Time- or Space-Varying Variables
- Constants and Parameters
- Intermediate (Computed) Variables
- Response Variables
- Computed Response Variables
- Measured Response Variables
EM Variables by Category
A second way to use variables to compare EMs is by focusing on the kind of information each variable represents. The top-level categories in the ESML Variable Classification Hierarchy are as follows:
- Policy Regarding Use or Management of Ecosystem Resources
- Land Surface (or Water Body Bed) Cover, Use or Substrate
- Human Demographic Data
- Human-Produced Stressor or Enhancer of Ecosystem Goods and Services Production
- Ecosystem Attributes and Potential Supply of Ecosystem Goods and Services
- Non-monetary Indicators of Human Demand, Use or Benefit of Ecosystem Goods and Services
- Monetary Values
Besides understanding model similarities, sorting the variables for each EM by these 7 categories makes it easier to see if the compared models can be linked using similar variables. For example, if one model estimates an ecosystem attribute (in Category 5), such as water clarity, as a response variable, and a second model uses a similar attribute (also in Category 5) as a predictor of recreational use, the two models can potentially be used in tandem. This comparison makes it easier to spot potential model linkages.
All EM Descriptors
This selection allows a more detailed comparison of EMs by model characteristics other than their variables. The 50-or-so EM descriptors for each model are presented, side-by-side, in the following categories:
- EM Identity and Description
- EM Modeling Approach
- EM Locations, Environments, Ecology
- EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
EM Descriptors by Modeling Concepts
This feature guides the user through the use of the following seven concepts for comparing and selecting EMs:
- Conceptual Model
- Modeling Objective
- Modeling Context
- Potential for Model Linkage
- Feasibility of Model Use
- Model Certainty
- Model Structural Information
Though presented separately, these concepts are interdependent, and information presented under one concept may have relevance to other concepts as well.
EM Identity and Description
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
EM Short Name
em.detail.shortNameHelp
?
|
Evoland v3.5 (bounded growth), Eugene, OR, USA | EnviroAtlas-Nat. filtration-water | Green biomass production, Central French Alps | Community flowering date, Central French Alps | Cultural ecosystem services, Bilbao, Spain | Coral taxa and land development, St.Croix, VI, USA | SAV occurrence, St. Louis River, MN/WI, USA | Value of a reef dive site, St. Croix, USVI | Fish species richness, Puerto Rico, USA | SMOKE emissions model, Asia |
EM Full Name
em.detail.fullNameHelp
?
|
Evoland v3.5 (with urban growth boundaries), Eugene, OR, USA | US EPA EnviroAtlas - Natural filtration (of water by tree cover); Example is shown for Durham NC and vicinity, USA | Green biomass production, Central French Alps | Community weighted mean flowering date, Central French Alps | Cultural ecosystem services, Bilbao, Spain | Coral taxa richness and land development, St.Croix, Virgin Islands, USA | Predicting submerged aquatic vegetation occurrence, St. Louis River Estuary, MN & WI, USA | Value of a dive site (reef), St. Croix, USVI | Fish species richness, Puerto Rico, USA | Development of an anthropogenic emissions processing system for Asia using SMOKE |
EM Source or Collection
em.detail.emSourceOrCollectionHelp
?
|
Envision |
US EPA | EnviroAtlas | i-Tree ?Comment:EnviroAtlas uses an application of the i-Tree Hydro model. |
EU Biodiversity Action 5 | EU Biodiversity Action 5 |
None ?Comment:EU Mapping Studies |
US EPA | US EPA | US EPA | None | None |
EM Source Document ID
|
47 ?Comment:Doc 183 is a secondary source for the Evoland model. |
223 | 260 | 260 | 191 | 96 | 330 | 335 | 355 | 481 |
Document Author
em.detail.documentAuthorHelp
?
|
Guzy, M. R., Smith, C. L. , Bolte, J. P., Hulse, D. W. and Gregory, S. V. | US EPA Office of Research and Development - National Exposure Research Laboratory | Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Lavorel, S., Grigulis, K., Lamarque, P., Colace, M-P, Garden, D., Girel, J., Pellet, G., and Douzet, R. | Casado-Arzuaga, I., Onaindia, M., Madariaga, I. and Verburg P. H. | Oliver, L. M., Lehrter, J. C. and Fisher, W. S. | Ted R. Angradi, Mark S. Pearson, David W. Bolgrien, Brent J. Bellinger, Matthew A. Starry, Carol Reschke | Yee, S. H., Dittmar, J. A., and L. M. Oliver | Pittman, S.J., Christensen, J.D., Caldow, C., Menza, C., and M.E. Monaco | Woo, J.H., Choi, K.C., Kim, H.K., Baek, B.H., Jang, M., Eum, J.H., Song, C.H., Ma, Y.I., Sunwoo, Y., Chang, L.S. and Yoo, S.H. |
Document Year
em.detail.documentYearHelp
?
|
2008 | 2013 | 2011 | 2011 | 2013 | 2011 | 2013 | 2014 | 2007 | 2012 |
Document Title
em.detail.sourceIdHelp
?
|
Policy research using agent-based modeling to assess future impacts of urban expansion into farmlands and forests | EnviroAtlas - Featured Community | Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Using plant functional traits to understand the landscape distribution of multiple ecosystem services | Mapping recreation and aesthetic value of ecosystems in the Bilbao Metropolitan Greenbelt (northern Spain) to support landscape planning | Relating landscape development intensity to coral reef condition in the watersheds of St. Croix, US Virgin Islands | Predicting submerged aquatic vegetation cover and occurrence in a Lake Superior estuary | Comparison of methods for quantifying reef ecosystem services: A case study mapping services for St. Croix, USVI | Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean | Development of an anthropogenic emissions processing system for Asia using SMOKE |
Document Status
em.detail.statusCategoryHelp
?
|
Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published | Peer reviewed and published |
Comments on Status
em.detail.commentsOnStatusHelp
?
|
Published journal manuscript | Published on US EPA EnviroAtlas website | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript | Published journal manuscript |
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
http://evoland.bioe.orst.edu/ ?Comment:Software is likely available. |
https://www.epa.gov/enviroatlas | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | https://www.cmascenter.org/smoke/ | |
Contact Name
em.detail.contactNameHelp
?
|
Michael R. Guzy | EnviroAtlas Team | Sandra Lavorel | Sandra Lavorel | Izaskun Casado-Arzuaga | Leah Oliver | Ted R. Angradi | Susan H. Yee | Simon Pittman | Jung-Hun Woo |
Contact Address
|
Oregon State University, Dept. of Biological and Ecological Engineering | Not reported | Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | Laboratoire d’Ecologie Alpine, UMR 5553 CNRS Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France | Plant Biology and Ecology Department, University of the Basque Country UPV/EHU, Campus de Leioa, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain | National Health and Environmental Research Effects Laboratory | U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA | US EPA, Office of Research and Development, NHEERL, Gulf Ecology Division, Gulf Breeze, FL 32561, USA | 1305 East-West Highway, Silver Spring, MD 20910, USA | Department of Advanced Technology Fusion, Room 812, San-Hak Bldg., Konkuk University, Seoul, South Korea |
Contact Email
|
Not reported | enviroatlas@epa.gov | sandra.lavorel@ujf-grenoble.fr | sandra.lavorel@ujf-grenoble.fr | izaskun.casado@ehu.es | leah.oliver@epa.gov | angradi.theodore@epa.gov | yee.susan@epa.gov | simon.pittman@noaa.gov | jwoo@konkuk.ac.kr |
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
Summary Description
em.detail.summaryDescriptionHelp
?
|
**Note: A more recent version of this model exists. See Related EMs below for links to related models/applications.** ABSTRACT: "Spatially explicit agent-based models can represent the changes in resilience and ecological services that result from different land-use policies…This type of analysis generates ensembles of alternate plausible representations of future system conditions. User expertise steers interactive, stepwise system exploration toward inductive reasoning about potential changes to the system. In this study, we develop understanding of the potential alternative futures for a social-ecological system by way of successive simulations that test variations in the types and numbers of policies. The model addresses the agricultural-urban interface and the preservation of ecosystem services. The landscape analyzed is at the junction of the McKenzie and Willamette Rivers adjacent to the cities of Eugene and Springfield in Lane County, Oregon." AUTHOR'S DESCRIPTION: "Two general scenarios for urban expansion were created to set the bounds on what might be possible for the McKenzie-Willamette study area. One scenario, fish conservation, tried to accommodate urban expansion, but gave the most weight to policies that would produce resilience and ecosystem services to restore threatened fish populations. The other scenario, unconstrained development, reversed the weighting. The 35 policies in the fish conservation scenario are designed to maintain urban growth boundaries (UGB), accommodate human population growth through increased urban densities, promote land conservation through best-conservation practices on agricultural and forest lands, and make rural land-use conversions that benefit fish. In the unconstrained development scenario, 13 policies are mainly concerned with allowing urban expansion in locations desired by landowners. Urban expansion in this scenario was not constrained by the extent of the UGB, and the policies are not intended to create conservation land uses." | The Natural Filtration model has been used to create coverages for several US communities. An example for Durham, NC is shown in this entry. METADATA ABSTRACT: "This EnviroAtlas dataset presents environmental benefits of the urban forest in 193 block groups in Durham, North Carolina... runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas." METADATA DESCRIPTION: "The i-Tree Hydro model estimates the effects of tree and impervious cover on hourly stream flow values for a watershed (Wang et al 2008). i-Tree Hydro also estimates changes in water quality using hourly runoff estimates and mean and median national event mean concentration (EMC) values. The model was calibrated using hourly stream flow data to yield the best fit between model and measured stream flow results… After calibration, the model was run a number of times under various conditions to see how the stream flow would respond given varying tree and impervious cover in the watershed… The term event mean concentration (EMC) is a statistical parameter used to represent the flow-proportional average concentration of a given parameter during a storm event. EMC data is used for estimating pollutant loading into watersheds. The response outputs were calculated as kg of pollutant per square meter of land area for pollutants. These per square meter values were multiplied by the square meters of land area in the block group to estimate the effects at the block group level." METADATA DESCRIPTION PARAPHRASED: Changes in water quality were estimated for the following pollutants (entered as separate runs); total suspended solids (TSS), total phosphorus, soluble phosphorus, nitrites and nitrates, total Kjeldahl nitrogen (TKN), biochemical oxygen demand (BOD5), chemical oxygen demand (COD5), and copper. "Reduction in annual runoff (census block group)" variable data was derived from the EnviroAtlas water recharge coverage which used the i-Tree Hydro model. | ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services. Vegetative height and leaf traits such as leaf dry matter content were response traits strongly influenced by land use and abiotic environment, with follow-on effects on several ecosystem properties (e.g., green biomass production), and could therefore be used as functional markers of ES." AUTHOR'S DESCRIPTION: "Variation in green biomass production was modelled using…traits community-weighted mean (CWM) and functional divergence (FD) and abiotic variables (continuous variables; trait + abiotic) following Diaz et al. (2007). …The comparison between this model and the land-use alone model identifies the need for site-based information beyond a land use or land cover proxy, and the comparison with the land use + abiotic model assesses the value of additional ecological (trait) information…Green biomass production for each pixel was calculated and mapped using model estimates for…regression coefficients on abiotic variables and traits. For each pixel these calculations were applied to mapped estimates of abiotic variables and trait CWM and FD. This step is critically novel as compared to a direct application of the model by Diaz et al. (2007) in that we explicitly modelled the responses of trait community-weighted means and functional divergences to environment prior to evaluating their effects on ecosystem properties. Such an approach is the key to the explicit representation of functional variation across the landscape, as opposed to the use of unique trait values within each land use (see Albert et al. 2010)." | ABSTRACT: "Here, we propose a new approach for the analysis, mapping and understanding of multiple ES delivery in landscapes. Spatially explicit single ES models based on plant traits and abiotic characteristics are combined to identify ‘hot’ and ‘cold’ spots of multiple ES delivery, and the land use and biotic determinants of such distributions. We demonstrate the value of this trait-based approach as compared to a pure land-use approach for a pastoral landscape from the central French Alps, and highlight how it improves understanding of ecological constraints to, and opportunities for, the delivery of multiple services." AUTHOR'S DESCRIPTION: "Community-weighted mean date of flowering onset was modelled using mixed models with land use and abiotic variables as fixed effects (LU + abiotic model) and year as a random effect…and modelled for each 20 x 20 m pixel using GLM estimated effects for each land use category and estimated regression coefficients with abiotic variables." | ABSTRACT "This paper presents a method to quantify cultural ecosystem services (ES) and their spatial distribution in the landscape based on ecological structure and social evaluation approaches. The method aims to provide quantified assessments of ES to support land use planning decisions. A GIS-based approach was used to estimate and map the provision of recreation and aesthetic services supplied by ecosystems in a peri-urban area located in the Basque Country, northern Spain. Data of two different public participation processes (frequency of visits to 25 different sites within the study area and aesthetic value of different landscape units) were used to validate the maps. Three maps were obtained as results: a map showing the provision of recreation services, an aesthetic value map and a map of the correspondences and differences between both services. The data obtained in the participation processes were found useful for the validation of the maps. A weak spatial correlation was found between aesthetic quality and recreation provision services, with an overlap of the highest values for both services only in 7.2 % of the area. A consultation with decision-makers indicated that the results were considered useful to identify areas that can be targeted for improvement of landscape and recreation management." | AUTHOR'S DESCRIPTION: "In this exploratory comparison, stony coral condition was related to watershed LULC and LDI values. We also compared the capacity of other potential human activity indicators to predict coral reef condition using multivariate analysis." (294) | ABSTRACT: “Submerged aquatic vegetation (SAV) provides the biophysical basis for multiple ecosystem services in Great Lakes estuaries. Understanding sources of variation in SAV is necessary for sustainable management of SAV habitat. From data collected using hydroacoustic survey methods, we created predictive models for SAV in the St. Louis River Estuary (SLRE) of western Lake Superior. The dominant SAV species in most areas of the estuary was American wild celery (Vallisneria americana Michx.)…” AUTHOR’S DESCRIPTION: “The SLRE is a Great Lakes “rivermouth” ecosystem as defined by Larson et al. (2013). The 5000-ha estuary forms a section of the state border between Duluth, Minnesota and Superior, Wisconsin…In the SLRE, SAV beds are often patchy, turbidity varies considerably among areas (DeVore, 1978) and over time, and the growing season is short. Given these conditions, hydroacoustic survey methods were the best option for generating the extensive, high resolution data needed for modeling. From late July through mid September in 2011, we surveyed SAV in Allouez Bay, part of Superior Bay, eastern half of St. Louis Bay, and Spirit Lake…We used the measured SAV percent cover at the location immediately previous to each useable record location along each transect as a lag variable to correct for possible serial autocorrelation of model error. SAV percent cover, substrate parameters, corrected depth, and exposure and bed slope data were combined in Arc-GIS...We created logistic regression models for each area of the SLRE to predict the probability of SAV being present at each report location. We created models for the training data set using the Logistic procedure in SAS v.9.1 with step wise elimination (?=0.05). Plots of cover by depth for selected predictor values (Supplementary Information Appendix C) suggested that interactions between depth and other predictors were likely to be significant, and so were included in regression models. We retained the main effect if their interaction terms were significant in the model. We examined the performance of the models using the area under the receiver operating characteristic (AUROC) curve. AUROC is the probability of concordance between random pairs of observations and ranges from 0.5 to 1 (Gönen, 2006). We cross-validated logistic occurrence models for their ability to classify correctly locations in the validation (holdout) dataset and in the Superior Bay dataset… Model performance, as indicated by the area under the receiver operating characteristic (AUROC) curve was >0.8 (Table 3). Assessed accuracy of models (the percent of records where the predicted probability of occurrence and actual SAV presence or absence agreed) for split datasets was 79% for Allouez Bay, 86% for St. Louis Bay, and 78% for Spirit Lake." | ABSTRACT: "...We investigated and compared a number of existing methods for quantifying ecological integrity, shoreline protection, recreational opportunities, fisheries production, and the potential for natural products discovery from reefs. Methods were applied to mapping potential ecosystem services production around St. Croix, U.S. Virgin Islands. Overall, we found that a number of different methods produced similar predictions." AUTHOR'S DESCRIPTION: "A number of methods have been developed for linking biophysical attributes of reef condition, such as reef structural complexity, fish biomass, or species richness, to provisioning of ecosystem goods and services (Principe et al., 2012). We investigated the feasibility of using existing methods and data for mapping production of reef ecosystem goods and services. We applied these methods toward mapping potential ecosystem goods and services production in St. Croix, U.S. Virgin Islands (USVI)...For each of the five categories of ecosystem services, we chose a suite of models and indices for estimating potential production based on relative ease of implementation, consisting of well-defined parameters, and likely availability of input data, to maximize potential for transferability to other locations. For each method, we assembled the necessary reef condition and environmental data as spatial data layers for St. Croix (Table1). The coastal zone surrounding St. Croix was divided into 10x10 m grid cells, and production functions were applied to quantify ecosystem services provisioning in each grid cell...A number of recreational activities are associated directly or indirectly with coral reefs including scuba diving, snorkeling, surfing, underwater photography, recreational fishing, wildlife viewing, beach sunbathing and swimming, and beachcombing (Principe et al., 2012)…Another method to quantify recreational opportunities is to use survey data of tourists and recreational visitors to the reefs to generate statistical models to quantify the link between reef condition and production of recreation-related ecosystem services. Wielgus et al. (2003) used interviews with SCUBA divers in Israel to derive coefficients for a choice model in which willingness to pay for higher quality dive sites was determined in part by a weighted combination of factors identified with dive quality: Relative value of dive site = 0.1227(Scoral+Sfish+Acoral+Afish)+0.0565V where Scoral, Sfish are coral and fish richness, Acoral, Afish are abundances of fish and coral per square meter, and V is water visibility (meters)." | ABSTRACT: "Effective management of coral reef ecosystems requires accurate, quantitative and spatially explicit information on patterns of species richness at spatial scales relevant to the management process. We combined empirical modelling techniques, remotely sensed data, field observations and GIS to develop a novel multi-scale approach for predicting fish species richness across a compositionally and topographically complex mosaic of marine habitat types in the U.S. Caribbean. First, the performance of three different modelling techniques (multiple linear regression, neural networks and regression trees) was compared using data from southwestern Puerto Rico and evaluated using multiple measures of predictive accuracy. Second, the best performing model was selected. Third, the generality of the best performing model was assessed through application to two geographically distinct coral reef ecosystems in the neighbouring U.S. Virgin Islands. Overall, regression trees outperformed multiple linear regression and neural networks. The best performing regression tree model of fish species richness (high, medium, low classes) in southwestern Puerto Rico exhibited an overall map accuracy of 75%; 83.4% when only high and low species richness areas were evaluated. In agreement with well recognised ecological relationships, areas of high fish species richness were predicted for the most bathymetrically complex areas with high mean rugosity and high bathymetric variance quantified at two different spatial extents (≤0.01 km2). Water depth and the amount of seagrasses and hard-bottom habitat in the seascape were of secondary importance. This model also provided good predictions in two geographically distinct regions indicating a high level of generality in the habitat variables selected. Results indicated that accurate predictions of fish species richness could be achieved in future studies using remotely sensed measures of topographic complexity alone. This integration of empirical modelling techniques with spatial technologies provides an important new tool in support of ecosystem-based management for coral reef ecosystems." | Air quality modeling is a useful methodology to investigate air quality degradation in various locations and to analyze effectiveness of emission reduction plans. A comprehensive air quality model usually requires a coordinated set of emissions input of all necessary chemical species. We have developed an anthropogenic emissions processing system for Asia in support of air quality modeling and analysis over Asia (named SMOKE-Asia). The SMOKE (Sparse Matrix Operator kernel Emissions) system, which was developed by U.S. EPA and has been maintained by the Carolina Environmental Program (CEP) of the University of North Carolina, was used to develop our emissions processing system. A merged version of INTEX 2006 and TRACE-P 2000 inventories was used as an initial Asian emissions inventory. The IDA (Inventory Data Analyzer) format was used to create SMOKE-ready emissions. Source Classification Codes (SCCs) and country/state/county (FIPS) code, which are the two key data fields of SMOKE IDA data structure, were created for Asia. The 38 SCCs and 2752 FIPS codes were allocated to our SMOKE-ready emissions for more comprehensive processing. US EPA’s MIMS (Multimedia Integrated Modeling System) Spatial Allocator software, along with many global and regional GIS shapes, were used to create spatial allocation profiles for Asia. Temporal allocation and chemical speciation profiles were partly regionalized using Asia-based studies. Initial data production using the developed SMOKE-Asia system was successfully performed. NOx and VOC emissions for the year 2009 were projected to be increased by 50% from those of 1997. The emission hotspots, such as large cities and large point sources, are distinguished in the domain due to spatial allocation. Regional emission peaks were distinguished due to temporally resolved emission information. The PAR (Paraffin carbon bond) and XYL (Xylene and other polyalkyl aromatics) showed the first and second largest emission rate among VOC species. Most of point source emissions are located in layers 3 to 4, which the altitude range reaches 310–550 m AGL. Qualitative inter-comparison between model output and ground/satellite measurement showed good agreements in terms of spatial and temporal patterns. We expect that the result of this study will provide better air quality modeling inputs, which will act as a major step to improve our understanding of Asian air quality. |
Specific Policy or Decision Context Cited
em.detail.policyDecisionContextHelp
?
|
Authors Description: " By policy, we mean land management options that span the domains of zoning, agricultural and forest production, environmental protection, and urban development, including the associated regulations, laws, and practices. The policies we used in our SES simulations include urban containment policies…We also used policies modeled on agricultural practices that affect ecoystem services and capital…" | None identified | None identified | None identified | Land management, ecosystem management, response to EU 2020 Biodiversity Strategy | Not applicable | None identified | None identified | None provided | None provided |
Biophysical Context
|
No additional description provided | No additional description provided | Elevation ranges from 1552 to 2442 m, on predominately south-facing slopes | Elevation ranges from 1552 to 2442 m, on predominantly south-facing slopes | Northern Spain; Bizkaia region | nearshore; <1.5 km offshore; <12 m depth | submerged aquatic vegetation | No additional description provided | Hard and soft benthic habitat types approximately to the 33m isobath | Asia |
EM Scenario Drivers
em.detail.scenarioDriverHelp
?
|
Five scenarios that include urban growth boundaries and various combinations of unconstrainted development, fish conservation, agriculture and forest reserves. ?Comment:Additional alternatives included adding agricultural and forest reserves, and adding or removing urban growth boundaries to the three main scenarios. |
No scenarios presented | No scenarios presented | No scenarios presented | No scenarios presented | Not applicable | No scenarios presented | No scenarios presented | No scenarios presented | NA |
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
Method Only, Application of Method or Model Run
em.detail.methodOrAppHelp
?
|
Method + Application (multiple runs exist) View EM Runs | Method + Application (multiple runs exist) View EM Runs | Method + Application | Method + Application | Method + Application | Method + Application | Method + Application | Method + Application | Method + Application | Method + Application |
New or Pre-existing EM?
em.detail.newOrExistHelp
?
|
New or revised model | Application of existing model | New or revised model | New or revised model | New or revised model | New or revised model | New or revised model | Application of existing model | New or revised model | Application of existing model |
Related EMs (for example, other versions or derivations of this EM) described in ESML
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
Document ID for related EM
em.detail.relatedEmDocumentIdHelp
?
|
Doc-47 | Doc-313 | Doc-314 ?Comment:Doc 183 is a secondary source for the Evoland model. |
Doc-198 | Doc-260 | Doc-260 | Doc-269 | None | None | None | None | Doc-355 | Doc-478 |
EM ID for related EM
em.detail.relatedEmEmIdHelp
?
|
EM-333 | EM-369 | EM-137 | EM-142 | EM-66 | EM-68 | EM-69 | EM-70 | EM-71 | EM-79 | EM-80 | EM-81 | EM-82 | EM-83 | EM-65 | EM-66 | EM-68 | EM-69 | EM-70 | EM-79 | EM-80 | EM-81 | EM-82 | EM-83 | None | None | None | None | EM-698 | EM-699 | EM-1012 | EM-1021 |
EM Modeling Approach
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
EM Temporal Extent
em.detail.tempExtentHelp
?
|
1990-2050 | 1999-2010 | 2007-2009 | 2007-2008 | 2000 - 2007 | 2006-2007 | 2010 - 2012 | 2006-2007, 2010 | 2000-2005 | 1997-2009 |
EM Time Dependence
em.detail.timeDependencyHelp
?
|
time-dependent |
time-stationary ?Comment:The underlying i-Tree Hydro model, used to generate the annual flows for which EMCs were ultimately applied, operated on an hourly timestep. The final annual flow parameter however is time stationary. |
time-stationary | time-stationary | time-stationary | time-stationary | time-stationary | time-stationary | time-stationary | time-dependent |
EM Time Reference (Future/Past)
em.detail.futurePastHelp
?
|
future time | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | past time |
EM Time Continuity
em.detail.continueDiscreteHelp
?
|
discrete | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | continuous |
EM Temporal Grain Size Value
em.detail.tempGrainSizeHelp
?
|
2 | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable |
EM Temporal Grain Size Unit
em.detail.tempGrainSizeUnitHelp
?
|
Year | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
Bounding Type
em.detail.boundingTypeHelp
?
|
Geopolitical | Geopolitical | Physiographic or Ecological | Physiographic or Ecological | Geopolitical | Physiographic or Ecological | Physiographic or ecological | Physiographic or ecological | Physiographic or ecological | Geopolitical |
Spatial Extent Name
em.detail.extentNameHelp
?
|
Junction of McKenzie and Willamette Rivers, adjacent to the cities of Eugene and Springfield, Lane Co., Oregon, USA | Durham, NC and vicinity | Central French Alps | Central French Alps | Bilbao Metropolitan Greenbelt | St.Croix, U.S. Virgin Islands | St. Louis River Estuary | Coastal zone surrounding St. Croix | SW Puerto Rico, | Asia |
Spatial Extent Area (Magnitude)
em.detail.extentAreaHelp
?
|
10-100 km^2 | 100-1000 km^2 | 10-100 km^2 | 10-100 km^2 | 100-1000 km^2 | 10-100 km^2 | 10-100 km^2 | 100-1000 km^2 | 100-1000 km^2 | 1000-10,000 km^2. |
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
EM Spatial Distribution
em.detail.distributeLumpHelp
?
|
spatially distributed (in at least some cases) ?Comment:Spatial grain for computations is comprised of 16,005 polygons of various size covering 7091 ha. |
spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially lumped (in all cases) |
spatially distributed (in at least some cases) ?Comment:BH: Each individual transect?s data was parceled into location reports, and that each report?s ?quadrat? area was dependent upon the angle of the hydroacoustic sampling beam. The spatial grain is 0.07 m^2, 0.20 m^2 and 0.70 m^2 for depths of 1 meter, 2 meters and 3 meters, respectively. |
spatially distributed (in at least some cases) | spatially distributed (in at least some cases) | spatially lumped (in all cases) |
Spatial Grain Type
em.detail.spGrainTypeHelp
?
|
area, for pixel or radial feature | other (specify), for irregular (e.g., stream reach, lake basin) | area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature | Not applicable | area, for pixel or radial feature | area, for pixel or radial feature | area, for pixel or radial feature | Not applicable |
Spatial Grain Size
em.detail.spGrainSizeHelp
?
|
varies | irregular | 20 m x 20 m | 20 m x 20 m | 2 m x 2 m | Not applicable | 0.07 m^2 to 0.70 m^2 | 10 m x 10 m | not reported | Not applicable |
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
EM Computational Approach
em.detail.emComputationalApproachHelp
?
|
Numeric |
Analytic ?Comment:The underlying i-Tree Hydro model, used to generate the annual flows for which EMCs were ultimately applied, was numeric. The final parameter however did not require iteration. |
Analytic | Analytic | Analytic | Analytic | Analytic | Analytic | Analytic | Numeric |
EM Determinism
em.detail.deterStochHelp
?
|
stochastic | deterministic | deterministic | deterministic | deterministic | deterministic | deterministic | deterministic | deterministic | deterministic |
Statistical Estimation of EM
em.detail.statisticalEstimationHelp
?
|
Comment:Agent based modeling results in response indices. |
|
|
|
|
|
|
|
|
|
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
Model Calibration Reported?
em.detail.calibrationHelp
?
|
Unclear | Unclear | No | No | No | Yes | Yes | Yes | No | Unclear |
Model Goodness of Fit Reported?
em.detail.goodnessFitHelp
?
|
No | No | Yes | Yes | No | Yes | Yes | No | Yes | Unclear |
Goodness of Fit (metric| value | unit)
em.detail.goodnessFitValuesHelp
?
|
None | None |
|
|
None |
|
|
None |
|
None |
Model Operational Validation Reported?
em.detail.validationHelp
?
|
No | Unclear | Yes | No | Yes | No | Yes | Yes | Yes | Yes |
Model Uncertainty Analysis Reported?
em.detail.uncertaintyAnalysisHelp
?
|
No | Unclear | No | No | No | Yes | No | No | No | Unclear |
Model Sensitivity Analysis Reported?
em.detail.sensAnalysisHelp
?
|
No ?Comment:Sensitivity analysis performed for agent values only. |
Unclear | No | No | No | No | No | No | Yes | Unclear |
Model Sensitivity Analysis Include Interactions?
em.detail.interactionConsiderHelp
?
|
Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | Not applicable | No | Not applicable |
EM Locations, Environments, Ecology
Terrestrial location (Classification hierarchy: Continent > Country > U.S. State [United States only])
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
|
|
|
|
|
None |
|
None | None |
|
Marine location (Classification hierarchy: Realm > Region > Province > Ecoregion)
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
None | None | None | None | None |
|
None |
|
|
|
Centroid Lat/Long (Decimal Degree)
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
Centroid Latitude
em.detail.ddLatHelp
?
|
44.11 | 35.99 | 45.05 | 45.05 | 43.25 | 17.75 | 46.72 | 17.73 | 17.9 | 38.63 |
Centroid Longitude
em.detail.ddLongHelp
?
|
-123.09 | -78.96 | 6.4 | 6.4 | -2.92 | -64.75 | -96.13 | -64.77 | 67.11 | 117.79 |
Centroid Datum
em.detail.datumHelp
?
|
WGS84 | None provided | WGS84 | WGS84 | WGS84 | NAD83 | WGS84 | WGS84 | WGS84 | WGS84 |
Centroid Coordinates Status
em.detail.coordinateStatusHelp
?
|
Estimated | Estimated | Provided | Provided | Provided | Estimated | Estimated | Estimated | Estimated | Estimated |
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
EM Environmental Sub-Class
em.detail.emEnvironmentalSubclassHelp
?
|
Rivers and Streams | Forests | Agroecosystems | Created Greenspace | Rivers and Streams | Created Greenspace | Agroecosystems | Grasslands | Agroecosystems | Grasslands | Aquatic Environment (sub-classes not fully specified) | Rivers and Streams | Near Coastal Marine and Estuarine | Terrestrial Environment (sub-classes not fully specified) | Forests | Agroecosystems | Created Greenspace | Grasslands | Scrubland/Shrubland | Near Coastal Marine and Estuarine | Aquatic Environment (sub-classes not fully specified) | Rivers and Streams | Inland Wetlands | Lakes and Ponds | Near Coastal Marine and Estuarine | Near Coastal Marine and Estuarine | Atmosphere |
Specific Environment Type
em.detail.specificEnvTypeHelp
?
|
Agricultural-urban interface at river junction | Urban areas including streams | Subalpine terraces, grasslands, and meadows | Subalpine terraces, grasslands, and meadows. | none | stony coral reef | Freshwater estuarine system | Coral reefs | shallow coral reefs | Asian atmosphere |
EM Ecological Scale
em.detail.ecoScaleHelp
?
|
Ecological scale is finer than that of the Environmental Sub-class | Not applicable | Not applicable | Not applicable | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale corresponds to the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Ecological scale is finer than that of the Environmental Sub-class | Not applicable |
Scale of differentiation of organisms modeled
EM ID
em.detail.idHelp
?
|
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
EM Organismal Scale
em.detail.orgScaleHelp
?
|
Not applicable | Not applicable | Community | Community | Not applicable | Guild or Assemblage | Not applicable | Guild or Assemblage | Guild or Assemblage | Not applicable |
Taxonomic level and name of organisms or groups identified
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
|
None Available | None Available | None Available | None Available |
|
None Available | None Available |
|
None Available |
EnviroAtlas URL
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
Dasymetric Allocation of Population, GAP Ecological Systems, The National Hydrography Dataset (NHD), Percent Natural Land Cover in Stream Buffer , Hectares of Vegetable Crops, Employment Rate | None Available | GAP Ecological Systems | None Available | Percent IUCN Status II, Percent GAP Status 1 & 2 | None Available | Average Annual Precipitation | None Available | None Available | None Available |
EM Ecosystem Goods and Services (EGS) potentially modeled, by classification system
CICES v 4.3 - Common International Classification of Ecosystem Services (Section > Division > Group > Class)
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
|
|
None | None |
|
|
|
|
|
|
<a target="_blank" rel="noopener noreferrer" href="https://www.epa.gov/eco-research/national-ecosystem-services-classification-system-nescs-plus">National Ecosystem Services Classification System (NESCS) Plus</a>
(Environmental Subclass > Ecological End-Product (EEP) > EEP Subclass > EEP Modifier)
EM-12 ![]() |
EM-51 ![]() |
EM-65 | EM-71 | EM-193 | EM-260 | EM-414 | EM-455 | EM-590 | EM-1019 |
|
|
|
None |
|
|
None |
|
|
|